Skip to main content

Advertisement

Log in

Zebrafish as a model to study neuroblastoma development

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Neuroblastoma is a pediatric solid tumor arising from embryonic neural crest progenitor cells that normally generate the peripheral sympathetic nervous system. As such, the location of neuroblastoma tumors is correlated with the distribution of major post-ganglionic clusters throughout the sympathetic chain, with the highest incidence in the adrenal medulla or lumbar sympathetic ganglia (~65%). Neuroblastoma is an enigmatic tumor that can spontaneously regress with minimal treatment or become highly metastatic and develop resistance to aggressive treatments, including radiation and high-dose chemotherapy. Age of diagnosis, stage of disease and cellular and genetic features often predict whether the tumor will regress or advance to metastatic disease. Recent efforts using molecular and genomic technologies have allowed more accurate stratification of patients into low-, intermediate- and high-risk categories, thereby allowing for minimal intervention in low-risk patients and providing potential new therapeutic targets, such as the ALK receptor tyrosine kinase, for high-risk or relapsed patients. Despite these advances, the overall survival of high-risk neuroblastoma patients is still less than 50%. Furthermore, next-generation sequencing has revealed that almost two-thirds of neuroblastoma tumors do not contain obvious pathogenic mutations, suggesting that epigenetic mechanisms and/or a perturbed cellular microenvironment may heavily influence neuroblastoma development. Understanding the mechanisms that drive neuroblastoma, therefore, will likely require a combination of genomic, developmental and cancer biology approaches in whole animal systems. In this review, we discuss the contributions of zebrafish research to our understanding of neuroblastoma pathogenesis as well as the potential for this model system to accelerate the identification of more effective therapies for high-risk neuroblastoma patients in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Althoff K, Beckers A, Bell E, Nortmeyer M, Thor T, Sprussel A, Lindner S, De Preter K, Florin A, Heukamp LC, Klein-Hitpass L, Astrahantseff K, Kumps C, Speleman F, Eggert A, Westermann F, Schramm A, Schulte JH (2015) A Cre-conditional MYCN-driven neuroblastoma mouse model as an improved tool for preclinical studies. Oncogene 34:3357–3368

    Article  CAS  PubMed  Google Scholar 

  • Ambros PF, Ambros IM, Brodeur GM, Haber M, Khan J, Nakagawara A, Schleiermacher G, Speleman F, Spitz R, London WB, Cohn SL, Pearson AD, Maris JM (2009) International consensus for neuroblastoma molecular diagnostics: report from the international Neuroblastoma risk group (INRG) biology committee. Br J Cancer 100:1471–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagatell R, Beck-Popovic M, London WB, Zhang Y, Pearson AD, Matthay KK, Monclair T, Ambros PF, Cohn SL, International Neuroblastoma Risk G (2009) Significance of MYCN amplification in international neuroblastoma staging system stage 1 and 2 neuroblastoma: a report from the international Neuroblastoma risk group database. J Clin Oncol 27:365–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentires-Alj M, Paez JG, David FS, Keilhack H, Halmos B, Naoki K, Maris JM, Richardson A, Bardelli A, Sugarbaker DJ, Richards WG, Du J, Girard L, Minna JD, Loh ML, Fisher DE, Velculescu VE, Vogelstein B, Meyerson M, Sellers WR, Neel BG (2004) Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res 64:8816–8820

    Article  CAS  PubMed  Google Scholar 

  • Berry T, Luther W, Bhatnagar N, Jamin Y, Poon E, Sanda T, Pei D, Sharma B, Vetharoy WR, Hallsworth A, Ahmad Z, Barker K, Moreau L, Webber H, Wang W, Liu QS, Perez-Atayde A, Rodig S, Cheung NK, Raynaud F, Hallberg B, Robinson SP, Gray NS, Pearson ADJ, Eccles SA, Chesler L, George RE (2012) The ALK(F1174L) mutation potentiates the Oncogenic activity of MYCN in Neuroblastoma. Cancer Cell 22:117–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM (1984) Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224:1121–1124

    Article  CAS  PubMed  Google Scholar 

  • Carneiro MC, de Castro IP, Ferreira MG (2016) Telomeres in aging and disease: lessons from zebrafish. Dis Model Mech 9:737–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter DR, Murray J, Cheung BB, Gamble L, Koach J, Tsang J, Sutton S, Kalla H, Syed S, Gifford AJ, Issaeva N, Biktasova A, Atmadibrata B, Sun Y, Sokolowski N, Ling D, Kim PY, Webber H, Clark A, Ruhle M, Liu B, Oberthuer A, Fischer M, Byrne J, Saletta F, Thwe le M, Purmal A, Haderski G, Burkhart C, Speleman F, De Preter K, Beckers A, Ziegler DS, Liu T, Gurova KV, Gudkov AV, Norris MD, Haber M, Marshall GM (2015) Therapeutic targeting of the MYC signal by inhibition of histone chaperone FACT in neuroblastoma. Sci Transl Med 7:312ra176

    Article  PubMed  Google Scholar 

  • Chen Y, Takita J, Choi YL, Kato M, Ohira M, Sanada M, Wang L, Soda M, Kikuchi A, Igarashi T, Nakagawara A, Hayashi Y, Mano H, Ogawa S (2008) Oncogenic mutations of ALK kinase in neuroblastoma. Nature 455:971–974

    Article  CAS  PubMed  Google Scholar 

  • Cohn SL, Pearson AD, London WB, Monclair T, Ambros PF, Brodeur GM, Faldum A, Hero B, Iehara T, Machin D, Mosseri V, Simon T, Garaventa A, Castel V, Matthay KK, Force IT (2009) The international Neuroblastoma risk group (INRG) classification system: an INRG task force report. J Clin Oncol 27:289–297

    Article  PubMed  PubMed Central  Google Scholar 

  • Eleveld TF, Oldridge DA, Bernard V, Koster J, Daage LC, Diskin SJ, Schild L, Bentahar NB, Bellini A, Chicard M, Lapouble E, Combaret V, Legoix-Ne P, Michon J, Pugh TJ, Hart LS, Rader J, Attiyeh EF, Wei JS, Zhang S, Naranjo A, Gastier-Foster JM, Hogarty MD, Asgharzadeh S, Smith MA, Guidry Auvil JM, Watkins TB, Zwijnenburg DA, Ebus ME, van Sluis P, Hakkert A, van Wezel E, van der Schoot CE, Westerhout EM, Schulte JH, Tytgat GA, Dolman ME, Janoueix-Lerosey I, Gerhard DS, Caron HN, Delattre O, Khan J, Versteeg R, Schleiermacher G, Molenaar JJ, Maris JM (2015) Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations. Nat Genet 47:864–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasparian AV, Burkhart CA, Purmal AA, Brodsky L, Pal M, Saranadasa M, Bosykh DA, Commane M, Guryanova OA, Pal S, Safina A, Sviridov S, Koman IE, Veith J, Komar AA, Gudkov AV, Gurova KV (2011) Curaxins: anticancer compounds that simultaneously suppress NF-kappaB and activate p53 by targeting FACT. Sci Transl Med 3:95ra74

    Article  CAS  PubMed  Google Scholar 

  • George RE, Attiyeh EF, Li S, Moreau LA, Neuberg D, Li C, Fox EA, Meyerson M, Diller L, Fortina P, Look AT, Maris JM (2007) Genome-wide analysis of neuroblastomas using high-density single nucleotide polymorphism arrays. PLoS ONE 2:e255

    Article  PubMed  PubMed Central  Google Scholar 

  • George RE, Sanda T, Hanna M, Frohling S, Luther W 2nd, Zhang J, Ahn Y, Zhou W, London WB, McGrady P, Xue L, Zozulya S, Gregor VE, Webb TR, Gray NS, Gilliland DG, Diller L, Greulich H, Morris SW, Meyerson M, Look AT (2008) Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature 455:975–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan Y, Huang D, Chen F, Gao C, Tao T, Shi H, Zhao S, Liao Z, Lo LJ, Wang Y, Chen J, Peng J (2016) Phosphorylation of def regulates Nucleolar p53 turnover and cell cycle progression through def recruitment of Calpain3. PLoS Biol 14:e1002555

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutmann DH, Ferner RE, Listernick RH, Korf BR, Wolters PL, Johnson KJ (2017) Neurofibromatosis type 1. Nat Rev Dis Primers 3:17004

    Article  PubMed  Google Scholar 

  • Hallberg B, Palmer RH (2016) The role of the ALK receptor in cancer biology. Ann Oncol 27(Suppl 3):iii4–iii15

    Article  PubMed  Google Scholar 

  • He S, Mansour MR, Zimmerman MW, Ki DH, Layden HM, Akahane K, Gjini E, de Groh ED, Perez-Atayde AR, Zhu S, Epstein JA, Look AT (2016) Synergy between loss of NF1 and overexpression of MYCN in neuroblastoma is mediated by the GAP-related domain. eLife 5

  • Heukamp LC, Thor T, Schramm A, De Preter K, Kumps C, De Wilde B, Odersky A, Peifer M, Lindner S, Spruessel A, Pattyn F, Mestdagh P, Menten B, Kuhfittig-Kulle S, Kunkele A, Konig K, Meder L, Chatterjee S, Ullrich RT, Schulte S, Vandesompele J, Speleman F, Buttner R, Eggert A, Schulte JH (2012) Targeted expression of mutated ALK induces neuroblastoma in transgenic mice. Sci Transl Med 4:141ra191

    Article  Google Scholar 

  • Holzschuh J, Barrallo-Gimeno A, Ettl AK, Durr K, Knapik EW, Driever W (2003) Noradrenergic neurons in the zebrafish hindbrain are induced by retinoic acid and require tfap2a for expression of the neurotransmitter phenotype. Development 130:5741–5754

    Article  CAS  PubMed  Google Scholar 

  • Ismat FA, Xu J, Lu MM, Epstein JA (2006) The neurofibromin GAP-related domain rescues endothelial but not neural crest development in Nf1 mice. J Clin Invest 116:2378–2384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jager K, Walter M (2016) Therapeutic targeting of telomerase. Genes (Basel) 7

  • Janoueix-Lerosey I, Lequin D, Brugieres L, Ribeiro A, de Pontual L, Combaret V, Raynal V, Puisieux A, Schleiermacher G, Pierron G, Valteau-Couanet D, Frebourg T, Michon J, Lyonnet S, Amiel J, Delattre O (2008) Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 455:967–970

    Article  CAS  PubMed  Google Scholar 

  • Kiyonari S, Kadomatsu K (2015) Neuroblastoma models for insights into tumorigenesis and new therapies. Expert Opin Drug Discovery 10:53–62

    Article  CAS  Google Scholar 

  • Kohl NE, Kanda N, Schreck RR, Bruns G, Latt SA, Gilbert F, Alt FW (1983) Transposition and amplification of oncogene-related sequences in human neuroblastomas. Cell 35:359–367

    Article  CAS  PubMed  Google Scholar 

  • Lee JS, Padmanabhan A, Shin J, Zhu S, Guo F, Kanki JP, Epstein JA, Look AT (2010) Oligodendrocyte progenitor cell numbers and migration are regulated by the zebrafish orthologs of the NF1 tumor suppressor gene. Hum Mol Genet 19:4643–4653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L, Weiss WA (2016) Neuroblastoma. Nat Rev Dis Primers 2:16078

    Article  PubMed  Google Scholar 

  • Molenaar JJ, Koster J, Zwijnenburg DA, van Sluis P, Valentijn LJ, van der Ploeg I, Hamdi M, van Nes J, Westerman BA, van Arkel J, Ebus ME, Haneveld F, Lakeman A, Schild L, Molenaar P, Stroeken P, van Noesel MM, Ora I, Santo EE, Caron HN, Westerhout EM, Versteeg R (2012) Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 483:589–593

    Article  CAS  PubMed  Google Scholar 

  • Monclair T, Brodeur GM, Ambros PF, Brisse HJ, Cecchetto G, Holmes K, Kaneko M, London WB, Matthay KK, Nuchtern JG, von Schweinitz D, Simon T, Cohn SL, Pearson AD, Force IT (2009) The international Neuroblastoma risk group (INRG) staging system: an INRG task force report. J Clin Oncol 27:298–303

    Article  PubMed  PubMed Central  Google Scholar 

  • Montanaro L, Trere D, Derenzini M (2008) Nucleolus, ribosomes, and cancer. Am J Pathol 173:301–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montavon G, Jauquier N, Coulon A, Peuchmaur M, Flahaut M, Bourloud KB, Yan P, Delattre O, Sommer L, Joseph JM, Janoueix-Lerosey I, Gross N, Muhlethaler-Mottet A (2014) Wild-type ALK and activating ALK-R1275Q and ALK-F1174L mutations upregulate Myc and initiate tumor formation in murine neural crest progenitor cells. Oncotarget 5:4452–4466

    Article  PubMed  PubMed Central  Google Scholar 

  • Morrison MA, Zimmerman MW, Look AT, Stewart RA (2016) Studying the peripheral sympathetic nervous system and neuroblastoma in zebrafish. Methods Cell Biol 134:97–138

    Article  CAS  PubMed  Google Scholar 

  • Mosse YP, Laudenslager M, Longo L, Cole KA, Wood A, Attiyeh EF, Laquaglia MJ, Sennett R, Lynch JE, Perri P, Laureys G, Speleman F, Kim C, Hou C, Hakonarson H, Torkamani A, Schork NJ, Brodeur GM, Tonini GP, Rappaport E, Devoto M, Maris JM (2008) Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455:930–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peifer M, Hertwig F, Roels F, Dreidax D, Gartlgruber M, Menon R, Kramer A, Roncaioli JL, Sand F, Heuckmann JM, Ikram F, Schmidt R, Ackermann S, Engesser A, Kahlert Y, Vogel W, Altmuller J, Nurnberg P, Thierry-Mieg J, Thierry-Mieg D, Mariappan A, Heynck S, Mariotti E, Henrich KO, Gloeckner C, Bosco G, Leuschner I, Schweiger MR, Savelyeva L, Watkins SC, Shao C, Bell E, Hofer T, Achter V, Lang U, Theissen J, Volland R, Saadati M, Eggert A, de Wilde B, Berthold F, Peng Z, Zhao C, Shi L, Ortmann M, Buttner R, Perner S, Hero B, Schramm A, Schulte JH, Herrmann C, O’Sullivan RJ, Westermann F, Thomas RK, Fischer M (2015) Telomerase activation by genomic rearrangements in high-risk neuroblastoma. Nature 526:700–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pugh TJ, Morozova O, Attiyeh EF, Asgharzadeh S, Wei JS, Auclair D, Carter SL, Cibulskis K, Hanna M, Kiezun A, Kim J, Lawrence MS, Lichenstein L, McKenna A, Pedamallu CS, Ramos AH, Shefler E, Sivachenko A, Sougnez C, Stewart C, Ally A, Birol I, Chiu R, Corbett RD, Hirst M, Jackman SD, Kamoh B, Khodabakshi AH, Krzywinski M, Lo A, Moore RA, Mungall KL, Qian J, Tam A, Thiessen N, Zhao Y, Cole KA, Diamond M, Diskin SJ, Mosse YP, Wood AC, Ji L, Sposto R, Badgett T, London WB, Moyer Y, Gastier-Foster JM, Smith MA, Guidry Auvil JM, Gerhard DS, Hogarty MD, Jones SJ, Lander ES, Gabriel SB, Getz G, Seeger RC, Khan J, Marra MA, Meyerson M, Maris JM (2013) The genetic landscape of high-risk neuroblastoma. Nat Genet 45:279–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwab M, Alitalo K, Klempnauer KH, Varmus HE, Bishop JM, Gilbert F, Brodeur G, Goldstein M, Trent J (1983) Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature 305:245–248

    Article  CAS  PubMed  Google Scholar 

  • Seeger RC, Brodeur GM, Sather H, Dalton A, Siegel SE, Wong KY, Hammond D (1985) Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med 313:1111–1116

    Article  CAS  PubMed  Google Scholar 

  • Shin J, Padmanabhan A, de Groh ED, Lee JS, Haidar S, Dahlberg S, Guo F, He S, Wolman MA, Granato M, Lawson ND, Wolfe SA, Kim SH, Solnica-Krezel L, Kanki JP, Ligon KL, Epstein JA, Look AT (2012) Zebrafish neurofibromatosis type 1 genes have redundant functions in tumorigenesis and embryonic development. Dis Model Mech 5:881–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao T, Sondalle SB, Shi H, Zhu S, Perez-Atayde AR, Peng J, Baserga SJ, Look AT (2017) The pre-rRNA processing factor DEF is rate limiting for the pathogenesis of MYCN-driven neuroblastoma. Oncogene 36:3852–3867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teitz T, Inoue M, Valentine MB, Zhu K, Rehg JE, Zhao W, Finkelstein D, Wang YD, Johnson MD, Calabrese C, Rubinstein M, Hakem R, Weiss WA, Lahti JM (2013) Th-MYCN mice with caspase-8 deficiency develop advanced neuroblastoma with bone marrow metastasis. Cancer Res 73:4086–4097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valentijn LJ, Koster J, Zwijnenburg DA, Hasselt NE, van Sluis P, Volckmann R, van Noesel MM, George RE, Tytgat GA, Molenaar JJ, Versteeg R (2015) TERT rearrangements are frequent in neuroblastoma and identify aggressive tumors. Nat Genet 47:1411–1414

    Article  CAS  PubMed  Google Scholar 

  • Wang LL, Suganuma R, Ikegaki N, Tang X, Naranjo A, McGrady P, London WB, Hogarty MD, Gastier-Foster JM, Look AT, Park JR, Maris JM, Cohn SL, Seeger RC, Shimada H (2013) Neuroblastoma of undifferentiated subtype, prognostic significance of prominent nucleolar formation, and MYC/MYCN protein expression: a report from the Children’s oncology group. Cancer 119:3718–3726

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang LL, Teshiba R, Ikegaki N, Tang XX, Naranjo A, London WB, Hogarty MD, Gastier-Foster JM, Look AT, Park JR, Maris JM, Cohn SL, Seeger RC, Asgharzadeh S, Shimada H (2015) Augmented expression of MYC and/or MYCN protein defines highly aggressive MYC-driven neuroblastoma: a Children’s oncology group study. Br J Cancer 113:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss WA, Aldape K, Mohapatra G, Feuerstein BG, Bishop JM (1997) Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J 16:2985–2995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whittle SB, Smith V, Doherty E, Zhao S, McCarty S, Zage PE (2017) Overview and recent advances in the treatment of neuroblastoma. Expert Rev Anticancer Ther 17:369–386

    Article  CAS  PubMed  Google Scholar 

  • Yang CK, Seo H, Kim C, Brunet J, Kim K (1998) Paired-like homeodomain proteins, Phox2a and Phox2b, are responsible for noradrenergic cell-specific transcription of the dopamine-B-hydroxylase gene. J Neurochem 71:1813–1826

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Dong Z, Zhang C, Ung CY, He S, Tao T, Oliveira AM, Meves A, Ji B, Look AT, Li H, Neel BG, Zhu S (2017) Critical role for GAB2 in Neuroblastoma pathogenesis through the promotion of SHP2/MYCN cooperation. Cell Rep 18:2932–2942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu S, Lee JS, Guo F, Shin J, Perez-Atayde AR, Kutok JL, Rodig SJ, Neuberg DS, Helman D, Feng H, Stewart RA, Wang W, George RE, Kanki JP, Look AT (2012) Activated ALK collaborates with MYCN in neuroblastoma pathogenesis. Cancer Cell 21:362–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Monique Morrison and Reghan Boelter for providing the images in Fig. 1. We also thank Cicely Jette Stewart for professional editorial assistance. R.A.S is supported by the Huntsman Cancer Foundation and the American Cancer Society RSG-1302501-CSM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney A. Stewart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casey, M.J., Stewart, R.A. Zebrafish as a model to study neuroblastoma development. Cell Tissue Res 372, 223–232 (2018). https://doi.org/10.1007/s00441-017-2702-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-017-2702-0

Keywords

Navigation