Skip to main content

Advertisement

Log in

Physiological crosstalk between the AC/PKA and PLC/PKC pathways modulates melatonin-mediated, monochromatic-light-induced proliferation of T-lymphocytes in chickens

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Previous study has demonstrated that melatonin plays a critical role in monochromatic-light-induced lymphocyte proliferation in response to T cell mitogen concanavalin A (ConA). However, its intracellular mechanism is still unclear. In this study, we investigate the intracellular signal pathways of melatonin receptor-mediated T-lymphocyte proliferation in the spleens of chicks exposed to different light wavelengths. Results showed that green light enhanced T-lymphocyte proliferation by 2.46–6.83% and increased splenic mRNA and protein expressions of melatonin receptor subtypes (Mel1a, Mel1b and Mel1c) by 16.05–40.43% compared with the white, red and blue light groups. However, pinealectomy resulted in a decrease in T-lymphocyte proliferation and melatonin receptor expression with no statistically significant differences between the different light groups. In vitro experiments showed that the Mel1b selective antagonist 4P–PDOT, the Mel1c selective antagonist prazosin and the mitogen-activated protein kinase kinase-1 (MEK-1) inhibitor PD98059 suppressed both melatonin-induced lymphocyte proliferation in response to ConA and melatonin- and ConA-stimulated extracellular signal-regulated kinase 1/2 (ERK1/2) activity but that the Mel1a/Mel1b non-selective antagonist luzindole did not. In addition, pretreatment with forskolin (FSK, the adenylyl cyclase activator), H89 (the PKA inhibitor), U73122 (the PLC inhibitor) or Go6983 (the broad spectrum PKC inhibitor) markedly attenuated melatonin- and ConA-stimulated T-lymphocyte proliferation and ERK1/2 activity. These results demonstrate that melatonin mediates green-light-induced T-lymphocyte proliferation via the Mel1b and Mel1c receptors by triggering crosstalk between the cAMP/PKA and PLC/PKC signal pathways followed by ERK1/2 activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad R, Gupta S, Haldar C (2012a) Age dependent expression of melatonin membrane receptor (MT1, MT2) and its role in regulation of nitrosative stress in tropical rodent Funambulus Pennanti. Free Radic Res 46:194–203

    Article  CAS  PubMed  Google Scholar 

  • Ahmad R, Haldar C, Gupta S (2012b) Melatonin membrane receptor type MT1 modulates cell-mediated immunity in the seasonally breeding tropical rodent Funambulus Pennanti. Neuroimmunomodulation 19:50–59

    Article  CAS  PubMed  Google Scholar 

  • Carrillo-Vico A, GarcÍa-PergaÑeda A, Naji L, Calvo JR, Romero MP, Guerrero JM (2003) Expression of membrane and nuclear melatonin receptor mRNA and protein in the mouse immune system. Cell Mol Life Sci 60:2272–2278

    Article  CAS  PubMed  Google Scholar 

  • Chen L, He X, Zhang Y, Chen X, Lai X, Shao J, Shi Y, Zhou N (2014) Melatonin receptor type 1 signals to extracellular signal-regulated kinase 1 and 2 via Gi and Gs dually coupled pathways in HEK-293 cells. Biochemistry 53:2827–2839

    Article  CAS  PubMed  Google Scholar 

  • Currier NL, Sun LZY, Miller SC (2000) Exogenous melatonin: quantitative enhancement in vivo of cells mediating non-specific immunity. J Neuroimmunol 104:101–108

    Article  CAS  PubMed  Google Scholar 

  • Desilva DR, Jones EA, Favata MF, Jaffee BD, Magolda RL, Trzaskos JM, Scherle PA (1998) Inhibition of mitogen-activated protein kinase kinase blocks T cell proliferation but does not induce or prevent anergy. J Immunol 160:4175–4181

    CAS  PubMed  Google Scholar 

  • Drazen DL, Bilu D, Bilbo SD, Nelson RJ (2001) Melatonin enhancement of splenocyte proliferation is attenuated by luzindole, a melatonin receptor antagonist. Am J Physiol Regul Integr Comp Physiol 280:R1476–R1482

    CAS  PubMed  Google Scholar 

  • Drazen DL, Nelson RJ (2001) Melatonin receptor subtype MT2 (Mel 1b) and not mt1 (Mel 1a) is associated with melatonin-induced enhancement of cell-mediated and humoral immunity. Neuroendocrinology 74:178–184

    Article  CAS  PubMed  Google Scholar 

  • Ebisawa T, Karne S, Lerner MR, Reppert SM (1994) Expression cloning of a high-affinity melatonin receptor from Xenopus dermal melanophores. Proc Natl Acad Sci U S A 91:6133–6137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuyama W, Enomoto M, Mossaad E, Kawai S, Mikoshiba K, Kawazu S (2014) An interplay between 2 signaling pathways: melatonin-cAMP and IP3-Ca2+ signaling pathways control intraerythrocytic development of the malaria parasite plasmodium falciparum. Biochem Biophys Res Commun 446:125–131

    Article  CAS  PubMed  Google Scholar 

  • Gobbo V, Libri V, Villani N, Caliò R, Nisticò G (1989) Pinealectomy inhibits interleukin-2 production and natural killer activity in mice. Int J Immunopharmacol 11:567–573

    Article  PubMed  Google Scholar 

  • Guo Q, Dong Y, Cao J, Wang Z, Zhang Z, Chen Y (2015) Developmental changes of melatonin receptor expression in the spleen of the chicken, Gallus Domesticus. Acta Histochem 117:559–565

    Article  CAS  PubMed  Google Scholar 

  • Haldar C, Singh R (2001) Pineal modulation of thymus and immune function in a seasonally breeding tropical rodent, Funambulus Pennanti. J Exp Zool 289:90–98

    Article  CAS  PubMed  Google Scholar 

  • Hickman SP, Yang J, Thomas RM, Wells AD, Turka LA (2006) Defective activation of protein kinase C and Ras-ERK pathways limits IL-2 production and proliferation by CD4+CD25+ regulatory T cells. J Immunol 177:2186–2194

    Article  CAS  PubMed  Google Scholar 

  • Hofmann KP, Scheerer P, Hildebrand PW, Choe HW, Park JH, Heck M, Ernst OP (2009) A G protein-coupled receptor at work: the rhodopsin model. Trends Biochem Sci 34:540–552

    Article  CAS  PubMed  Google Scholar 

  • Ishchenko IY, Michurina SV (2014) Regional lymph nodes in the liver of rats in functional pinealectomy. Bull Exp Biol Med 157:649–653

    Article  CAS  PubMed  Google Scholar 

  • Janković BD, Knežević Z, Kojić L, Nikolić V (1994) Pineal gland and immune system. Immune functions in the chick embryo pinealectomized at 96 hours of incubation. Ann N Y Acad Sci 719:398–409

    Article  PubMed  Google Scholar 

  • Kliger CA, Gehad AE, Hulet RM, Roush WB, Lillehoj HS, Mashaly MM (2000) Effects of photoperiod and melatonin on lymphocyte activities in male broiler chickens. Poult Sci 79:18–25

    Article  CAS  PubMed  Google Scholar 

  • Kumar Yadav S, Haldar C, Kumar Singh S, Dash D (2014) Melatonin regulates splenocytes proliferation via IP3-dependent intracellular Ca2+ release in seasonally breeding bird, Perdicula asiatica. J Recept Signal Transduct Res 34:233–240

    Article  CAS  PubMed  Google Scholar 

  • Li J, Cao J, Wang Z, Dong Y, Chen Y (2015) Melatonin plays a critical role in inducing B lymphocyte proliferation of the bursa of Fabricius in broilers via monochromatic lights. J Photochem Photobiol B 142:29–34

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wang Z, Cao J, Dong Y, Chen Y (2013) Melatonin receptor subtypes Mel1a and Mel1c but not Mel1b are associated with monochromatic light-induced B-lymphocyte proliferation in broilers. Domest Anim Endocrinol 45:206–215

    Article  CAS  PubMed  Google Scholar 

  • Li YQ, Hii CS, Der CJ, Ferrante A (1999) Direct evidence that ERK regulates the production/secretion of interleukin-2 in PHA/PMA-stimulated T lymphocytes. Immunology 96:524–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Zhu Y, Xu Y, Reiter RJ (2012) Prevention of ERK activation involves melatonin-induced G1 and G2/M phase arrest in the human osteoblastic cell line hFOB 1.19. J Pineal Res 53:60–66

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Simon MI (1996) Regulation by cAMP-dependent protein kinease of a G-protein-mediated phospholipase C. Nature 382:83–87

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie RS, Melan MA, Passey DK, Witt-Enderby PA (2002) Dual coupling of MT1 and MT2 melatonin receptors to cyclic AMP and phosphoinositide signal transduction cascades and their regulation following melatonin exposure. Biochem Pharmacol 63:587–595

    Article  CAS  PubMed  Google Scholar 

  • Markowska M, Mrozkowiak A, Pawlak J, Skwarło-Sońta K (2004) Intracellular second messengers involved in melatonin signal transduction in chicken splenocytes in vitro. J Pineal Res 37:207–212

    Article  CAS  PubMed  Google Scholar 

  • Markowska M, Waloch M, Skwarlo-Sońta K (2001) Melatonin inhibits PHA-stimulated chicken lymphocyte proliferation in vitro. J Pineal Res 30:220–226

    Article  CAS  PubMed  Google Scholar 

  • Nah S-S, Won H-J, Park HJ, Ha E, Chung J-H, Cho HY, Baik HH (2009) Melatonin inhibits human fibroblast-like synoviocyte proliferation via extracellular signal-regulated protein kinase/P21CIP1/P27KIP1 pathways. J Pineal Res 47:70–74

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka T, Kaziro Y, Satoh T (1996) Analysis of the T-cell activation signaling pathway mediated by tyrosine kinases, protein kinase C, and Ras protein, which is modulated by intracellular cyclic AMP. Biochim Biophys Acta 1310:223–232

    Article  PubMed  Google Scholar 

  • Oner H, Kus I, Oner J, Ogetürk M, Ozan E, Ayar A (2004) Possible effects of melatonin on thymus gland after pinealectomy in rats. Neuro Endocrinol Lett 25:115–118

    CAS  PubMed  Google Scholar 

  • Park DJ, Min HK, Rhee SG (1992) Inhibition of CD3-linked phospholipase C by phorbol ester and by cAMP is associated with decreased phosphotyrosine and increased phosphoserine contents of PLC-gamma 1. J Biol Chem 267:1496–1501

    CAS  PubMed  Google Scholar 

  • Raman M, Chen W, Cobb MH (2007) Differential regulation and properties of MAPKs. Oncogene 26:3100–3112

    Article  CAS  PubMed  Google Scholar 

  • Reppert SM, Weaver DR, Cassone VM, Godson C, Kolakowski LF Jr (1995) Melatonin receptors are for the birds: molecular analysis of two receptor subtypes differentially expressed in chick brain. Neuron 15:1003–1015

    Article  CAS  PubMed  Google Scholar 

  • Roy B, Singh R, Kumar S, Rai U (2008) Diurnal variation in phagocytic activity of splenic phagocytes in freshwater teleost Channa punctatus: melatonin and its signaling mechanism. J Endocrinol 199:471–480

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Hidalgo M, Guerrero Montávez JM, Carrascosa-Salmoral MP, Naranjo Gutierrez MC, Lardone PJ, De La Lastra Romero CA (2009) Decreased MT1 and MT2 melatonin receptor expression in extrapineal tissues of the rat during physiological aging. J Pineal Res 46:29–35

    Article  PubMed  Google Scholar 

  • Shiu SYW, Pang B, Tam CW, Yao K-M (2010) Signal transduction of receptor-mediated antiproliferative action of melatonin on human prostate epithelial cells involves dual activation of Gαs and Gαq proteins. J Pineal Res 49:301–311

    Article  CAS  PubMed  Google Scholar 

  • Susko I, Mornjaković Z, Alicelebić S (2006) Early changes in rats cervical lymph nodes after pinealectomy. Med Arh 60:149–152

    PubMed  Google Scholar 

  • Tam CW, Mo CW, Yao K-M, Shiu SYW (2007) Signaling mechanisms of melatonin in antiproliferation of hormone-refractory 22Rv1 human prostate cancer cells: implications for prostate cancer chemoprevention. J Pineal Res 42:191–202

    Article  CAS  PubMed  Google Scholar 

  • Terrón MP, Delgado J, Paredes SD, Barriga C, Reiter RJ, Rodríguez AB (2009) Effect of melatonin and tryptophan on humoral immunity in young and old ringdoves (Streptopelia risoria). Exp Gerontol 44:653–658

    Article  PubMed  Google Scholar 

  • Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM (2013) Molecular signatures of G-protein-coupled receptors. Nature 494:185–194

    Article  CAS  PubMed  Google Scholar 

  • Tocharus C, Puriboriboon Y, Junmanee T, Tocharus J, Ekthuwapranee K, Govitrapong P (2014) Melatonin enhances adult rat hippocampal progenitor cell proliferation via ERK signaling pathway through melatonin receptor. Neuroscience 275:314–321

    Article  CAS  PubMed  Google Scholar 

  • Vishwas DK, Mukherjee A, Haldar C, Dash D, Nayak MK (2013) Improvement of oxidative stress and immunity by melatonin: an age dependent study in golden hamster. Exp Gerontol 48:168–182

    Article  CAS  PubMed  Google Scholar 

  • Xie D, Wang Z, Dong Y, Cao J, Wang J, Chen J, Chen Y (2008a) Effects of monochromatic light on immune response of broilers. Poult Sci 87:1535–1539

    Article  CAS  PubMed  Google Scholar 

  • Xie D, Wang Z, Cao J, Dong Y, Chen Y (2008b) Effects of monochromatic light on proliferation response of splencyte in broilers. Anat Histol Embryol 37:332–337

    Article  CAS  PubMed  Google Scholar 

  • Xiong XC, Zhu Y, Ge R, Liu LF, Yuan W (2015) Effect of melatonin on the extracellular-regulated kinase signal pathway activation and human osteoblastic cell line hFOB 1.19 proliferation. Int J Mol Sci 16:10337–10353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Cao J, Wang Z, Dong Y, Chen Y (2014) Effect of a combination of green and blue monochromatic light on broiler immune response. J Photochem Photobiol B 138:118–123

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National High Technology Research and Development Program of China (2013AA102306), Chinese National Nature of Science Foundation (31172277, 31272516, 31372387, 31472157 and 31672501), and Chinese Specialized Research Fund for the Doctoral Program of Higher Education (20130008110031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaoxing Chen.

Electronic supplementary material

ESM 1

(DOCX 2078 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Wang, Z., Dong, Y. et al. Physiological crosstalk between the AC/PKA and PLC/PKC pathways modulates melatonin-mediated, monochromatic-light-induced proliferation of T-lymphocytes in chickens. Cell Tissue Res 369, 555–565 (2017). https://doi.org/10.1007/s00441-017-2644-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-017-2644-6

Keywords

Navigation