Skip to main content

Advertisement

Log in

Clump formation in mouse pituitary-derived non-endocrine cell line Tpit/F1 promotes differentiation into growth-hormone-producing cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The adenohypophysis comprises six types of endocrine cells, including PIT1-lineage cells such as growth hormone (GH)-producing cells and heterogeneous non-endocrine cells, such as pituitary stem/progenitor cells as a source of endocrine cells. We determine the expression of characteristic stem cell marker genes, including sex-determining region Y-box 2 (Sox2), in mouse pituitary-derived non-endocrine cell lines Tpit/E, Tpit/F1 and TtT/GF. We observed high expression of fibroblast growth factor (FGF) receptors in Tpit/F1 cells, which we characterised by cultivation in medium containing a basic FGF and B27 supplement as used for neural stem-cell differentiation. A 4-day cultivation of Tpit/F1 produced floating embryonic stem-cell-like clumps accompanied by a three-fold increase in Sox2 expression. Passages in these clumps maintained the proliferative activity and Sox2 expression levels. After 10 days of cultivation, Tpit/F1 cell clumps were immuno-positive for SOX2 and Ki67 (proliferation marker) and loosely attached to the well bottom. An additional 10 days of cultivation induced the emergence of GH-positive/pituitary-specific transcription factor (PIT1)-negative cells showing migration from the clumps. Pit1 overexpression in attached cells could not induce GH production. Finally, we confirmed the presence of PIT1-negative GH-producing cells (3.2–7.7 % of all GH-positive cells) in rat pituitary. Thus, we demonstrate that Tpit/F1 has the plasticity to differentiate into one type of hormone-producing cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andoniadou CL, Matsushima D, Mousavy Gharavy SN, Signore M, Mackintosh AI, Schaeffer M, Gaston-Massuet C, Mollard P, Jacques TS, Le Tissier P, Dattani MT, Pevny LH, Martinez-Barbera JP (2013) Sox2(+) stem/progenitor cells in the adult mouse pituitary support organ homeostasis and have tumor-inducing potential. Cell Stem Cell 13:433–445

    Article  CAS  PubMed  Google Scholar 

  • Brewer GJ, Torricelli JR, Evege EK, Price PJ (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 35:567–576

    Article  CAS  PubMed  Google Scholar 

  • Camper SA, Saunders TL, Katz RW, Reeves RH (1990) The Pit-1 transcription factor gene is a candidate for the murine Snell dwarf mutation. Genomics 8:586–590

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Gremeaux L, Fu Q, Liekens D, Van Laere S, Vankelecom H (2009) Pituitary progenitor cells tracked down by side population dissection. Stem Cells 27:1182–1195

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Maruyama D, Sugiyama M, Sakai T, Mogi C, Kato M, Kurotani R, Shirasawa N, Takaki A, Renner U, Kato Y, Inoue K (2000) Cytological characterization of a pituitary folliculo-stellate-like cell line, Tpit/F1, with special reference to adenosine triphosphate-mediated neural nitric oxide synthetase expression and nitric oxide secretion. Endocrinology 141:3603–3610

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Kato T, Higuchi M, Yoshida S, Yako H, Kanno N, Kato Y (2013) Coxsackievirus and adenovirus receptor-positive cells compose the putative stem/progenitor cell niches in the marginal cell layer and parenchyma of the rat anterior pituitary. Cell Tissue Res 354:823–836

    Article  CAS  PubMed  Google Scholar 

  • Crenshaw EB III, Kalla K, Simmons DM, Swanson LW, Rosenfeld MG (1989) Cell-specific expression of the prolactin gene in transgenic mice is controlled by synergistic interactions between promoter and enhancer elements. Genes Dev 3:959–972

    Article  CAS  PubMed  Google Scholar 

  • Davis SW, Castinetti F, Carvalho LR, Ellsworth BS, Potok MA, Lyons RH, Brinkmeier ML, Raetzman LT, Carninci P, Mortensen AH, Hayashizaki Y, Arnhold IJ, Mendonca BB, Brue T, Camper SA (2010) Molecular mechanisms of pituitary organogenesis: in search of novel regulatory genes. Mol Cell Endocrinol 323:4–19

    Article  CAS  PubMed  Google Scholar 

  • DiMattia GE, Rhodes SJ, Krones A, Carriere C, O’Connell S, Kalla K, Arias C, Sawchenko P, Rosenfeld MG (1997) The Pit-1 gene is regulated by distinct early and late pituitary-specific enhancers. Dev Biol 182:180–190

    Article  CAS  PubMed  Google Scholar 

  • Fauquier T, Rizzoti K, Dattani M, Lovell-Badge R, Robinson IC (2008) SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland. Proc Natl Acad Sci U S A 105:2907–2912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folkman J, Klagsbrun M (1987) Angiogenic factors. Science 235:442–447

    Article  CAS  PubMed  Google Scholar 

  • Fu Q, Vankelecom H (2012) Regenerative capacity of the adult pituitary: multiple mechanisms of lactotroph restoration after transgenic ablation. Stem Cells Dev 21:3245–3257

    Article  CAS  PubMed  Google Scholar 

  • Fu Q, Gremeaux L, Luque RM, Liekens D, Chen J, Buch T, Waisman A, Kineman R, Vankelecom H (2012) The adult pituitary shows stem/progenitor cell activation in response to injury and is capable of regeneration. Endocrinology 153:3224–3235

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Lavandeira M, Quereda V, Flores I, Saez C, Diaz-Rodriguez E, Japon MA, Ryan AK, Blasco MA, Dieguez C, Malumbres M, Alvarez CV (2009) A GRFa2/Prop1/stem (GPS) cell niche in the pituitary. PLoS One 4:e4815

    Article  PubMed  PubMed Central  Google Scholar 

  • Gellersen B, Kempf R, Telgmann R, DiMattia GE (1995) Pituitary-type transcription of the human prolactin gene in the absence of Pit-1. Mol Endocrinol 9:887–901

    CAS  PubMed  Google Scholar 

  • Gonzalez AM, Logan A, Ying W, Lappi DA, Berry M, Baird A (1994) Fibroblast growth factor in the hypothalamic-pituitary axis: differential expression of fibroblast growth factor-2 and a high affinity receptor. Endocrinology 134:2289–2297

    Article  CAS  PubMed  Google Scholar 

  • Harvey S, Baudet ML, Murphy A, Luna M, Hull KL, Aramburo C (2004) Testicular growth hormone (GH): GH expression in spermatogonia and primary spermatocytes. Gen Comp Endocrinol 139:158–167

    Article  CAS  PubMed  Google Scholar 

  • Higuchi M, Kanno N, Yoshida S, Ueharu H, Chen M, Yako H, Shibuya S, Sekita M, Tsuda M, Mitsuishi H, Kato T, Kato Y (2014a) GFP-expressing S100β-positive cells of the rat anterior pituitary differentiate into hormone-producing cells. Cell Tissue Res 357:767–779

    Article  CAS  PubMed  Google Scholar 

  • Higuchi M, Yoshida S, Ueharu H, Chen M, Kato T, Kato Y (2014b) PRRX1 and PRRX2 distinctively participate in pituitary organogenesis and cell supply system. Cell Tissue Res 357:323–335

    Article  CAS  PubMed  Google Scholar 

  • Higuchi M, Yoshida S, Ueharu H, Chen M, Kato T, Kato Y (2015) PRRX1- and PRRX2-positive mesenchymal stem/progenitor cells are involved in vasculogenesis during rat embryonic pituitary development. Cell Tissue Res 361:557–565

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi K, Yagi S, Ono K, Nishiura Y, Tanaka M, Ishida M, Harigaya T (2004) Prolactin gene expression in mouse spleen helper T cells. J Endocrinol 183:639–646

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi K, Kikuchi M, Kusumoto K, Fujiwara K, Kouki T, Kawanishi K, Yashiro T (2010) Living-cell imaging of transgenic rat anterior pituitary cells in primary culture reveals novel characteristics of folliculo-stellate cells. J Endocrinol 204:115–123

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi K, Ilmiawati C, Fujiwara K, Tsukada T, Kikuchi M, Yashiro T (2012) Expression of chemokine CXCL12 and its receptor CXCR4 in folliculostellate (FS) cells of the rat anterior pituitary gland: the CXCL12/CXCR4 axis induces interconnection of FS cells. Endocrinology 153:1717–1724

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi K, Yako H, Yoshida S, Fujiwara K, Tsukada T, Kanno N, Ueharu H, Nishihara H, Kato T, Yashiro T, Kato Y (2016) S100β-positive cells of mesenchymal origin reside in the anterior lobe of the embryonic pituitary gland. PLoS One 11:e0163981

    Article  PubMed  PubMed Central  Google Scholar 

  • Inoue K, Matsumoto H, Koyama C, Shibata K, Nakazato Y, Ito A (1992) Establishment of a folliculo-stellate-like cell line from a murine thyrotripic pituitary tumor. Endocrinology 131:3110–3116

    Article  CAS  PubMed  Google Scholar 

  • Ivaska J (2011) Vimentin: central hub in EMT induction? Small GTPases 2:51–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Jayakody SA, Andoniadou CL, Gaston-Massuet C, Signore M, Cariboni A, Bouloux PM, Le Tissier P, Pevny LH, Dattani MT, Martinez-Barbera JP (2012) SOX2 regulates the hypothalamic-pituitary axis at multiple levels. J Clin Invest 122:3635–3646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klagsbrun M (1989) The fibroblast growth factor family: structural and biological properties. Prog Growth Factor Res 1:207–235

    Article  CAS  PubMed  Google Scholar 

  • Kooijman R, Malur A, Van Buul-Offers SC, Hooghe-Peters EL (1997) Growth hormone expression in murine bone marrow cells is independent of the pituitary transcription factor Pit-1. Endocrinology 138:3949–3955

    Article  CAS  PubMed  Google Scholar 

  • Korsching E, Packeisen J, Liedtke C, Hungermann D, Wulfing P, Diest PJ van, Brandt B, Boecker W, Buerger H (2005) The origin of vimentin expression in invasive breast cancer: epithelial-mesenchymal transition, myoepithelial histogenesis or histogenesis from progenitor cells with bilinear differentiation potential? J Pathol 206:451–457

  • Kurotani R, Yoshimura S, Iwasaki Y, Inoue K, Teramoto A, Osamura RY (2002) Exogenous expression of Pit-1 in AtT-20 corticotropic cells induces endogenous growth hormone gene transcription. J Endocrinol 172:477–487

    Article  CAS  PubMed  Google Scholar 

  • Le Provost F, Leroux C, Martin P, Gaye P, Djiane J (1994) Prolactin gene expression in ovine and caprine mammary gland. Neuroendocrinology 60:305–313

    Article  PubMed  Google Scholar 

  • Lin SC, Li S, Drolet DW, Rosenfeld MG (1994) Pituitary ontogeny of the Snell dwarf mouse reveals Pit-1-independent and Pit-1-dependent origins of the thyrotrope. Development 120:515–522

    CAS  PubMed  Google Scholar 

  • Maira M, Couture C, Le Martelot G, Pulichino AM, Bilodeau S, Drouin J (2003) The T-box factor Tpit recruits SRC/p160 co-activators and mediates hormone action. J Biol Chem 278:46523–46532

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto H, Ishibashi Y, Ohtaki T, Hasegawa Y, Koyama C, Inoue K (1993) Newly established murine pituitary folliculo-stellate-like cell line (TtT/GF) secretes potent pituitary glandular cell survival factors, one of which corresponds to metalloproteinase inhibitor. Biochem Biophys Res Commun 194:909–915

    Article  CAS  PubMed  Google Scholar 

  • Mazziotti G, Giustina A (2013) Glucocorticoids and the regulation of growth hormone secretion. Nat Rev Endocrinol 9:265–276

    Article  CAS  PubMed  Google Scholar 

  • Mendez MG, Kojima S, Goldman RD (2010) Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J 24:1838–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsuishi H, Kato T, Chen M, Cai LY, Yako H, Higuchi M, Yoshida S, Kanno N, Ueharu H, Kato Y (2013) Characterization of a pituitary-tumor-derived cell line, TtT/GF, that expresses Hoechst efflux ABC transporter subfamily G2 and stem cell antigen 1. Cell Tissue Res 354:563–572

    Article  CAS  PubMed  Google Scholar 

  • Mogi C, Miyai S, Nishimura Y, Fukuro H, Yokoyama K, Takaki A, Inoue K (2004) Differentiation of skeletal muscle from pituitary folliculo-stellate cells and endocrine progenitor cells. Exp Cell Res 292:288–294

    Article  CAS  PubMed  Google Scholar 

  • Mogi C, Goda H, Mogi K, Takaki A, Yokoyama K, Tomida M, Inoue K (2005) Multistep differentation of GH-producing cells from their immature cells. J Endocrinol 184:41–50

    Article  CAS  PubMed  Google Scholar 

  • Nishimura N, Ueharu H, Shibuya S, Nishihara H, Yoshida S, Higuchi M, Kanno N, Horiguchi K, Kato T, Kato Y (2016) Search for regulatory factors of pituitary-specific transcription factor PROP1 gene. J Reprod Dev 62:93–102

    Article  CAS  PubMed  Google Scholar 

  • Nogami H, Inoue K, Kawamura K (1997) Involvement of glucocorticoid-induced factor(s) in the stimulation of growth hormone expression in the fetal rat pituitary gland in vitro. Endocrinology 138:1810–1815

    Article  CAS  PubMed  Google Scholar 

  • Nogami H, Inoue K, Moriya H, Ishida A, Kobayashi S, Hisano S, Katayama M, Kawamura K (1999) Regulation of growth hormone-releasing hormone receptor messenger ribonucleic acid expression by glucocorticoids in MtT-S cells and in the pituitary gland of fetal rats. Endocrinology 140:2763–2770

    Article  CAS  PubMed  Google Scholar 

  • Ren SG, Taylor J, Dong J, Yu R, Culler MD, Melmed S (2003) Functional association of somatostatin receptor subtypes 2 and 5 in inhibiting human growth hormone secretion. J Clin Endocrinol Metab 88:4239–4245

    Article  CAS  PubMed  Google Scholar 

  • Render CL, Hull KL, Harvey S (1995) Neural expression of the pituitary GH gene. J Endocrinol 147:413–422

    Article  CAS  PubMed  Google Scholar 

  • Rifkin DB, Moscatelli D (1989) Recent developments in the cell biology of basic fibroblast growth factor. J Cell Biol 109:1–6

    Article  CAS  PubMed  Google Scholar 

  • Rizzoti K, Akiyama H, Lovell-Badge R (2013) Mobilized adult pituitary stem cells contribute to endocrine regeneration in response to physiological demand. Cell Stem Cell 13:419–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakai T, Sakamoto S, Ijima K, Matubara K, Kato Y, Inoue K (1999) Characterization of TSH-positive cells in foetal rat pars tuberalis that fail to express Pit-1 factor and thyroid hormone beta2 receptors. J Neuroendocrinol 11:187–193

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Pacheco A, Palomino T, Aranda A (1995) Retinoic acid induces expression of the transcription factor GHF-1/Pit-1 in pituitary prolactin- and growth hormone-producing cell lines. Endocrinology 136:5391–5398

    Article  CAS  PubMed  Google Scholar 

  • Shuto Y, Shibasaki T, Otagiri A, Kuriyama H, Ohata H, Tamura H, Kamegai J, Sugihara H, Oikawa S, Wakabayashi I (2002) Hypothalamic growth hormone secretagogue receptor regulates growth hormone secretion, feeding, and adiposity. J Clin Invest 109:1429–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suga H, Kadoshima T, Minaguchi M, Ohgushi M, Soen M, Nakano T, Takata N, Wataya T, Muguruma K, Miyoshi H, Yonemura S, Oiso Y, Sasai Y (2011) Self-formation of functional adenohypophysis in three-dimensional culture. Nature 480:57–62

    Article  CAS  PubMed  Google Scholar 

  • Tamura H, Kamegai J, Sugihara H, Kineman RD, Frohman LA, Wakabayashi I (2000) Glucocorticoids regulate pituitary growth hormone secretagogue receptor gene expression. J Neuroendocrinol 12:481–485

    Article  CAS  PubMed  Google Scholar 

  • Thorner MO, Chapman IM, Gaylinn BD, Pezzoli SS, Hartman ML (1997) Growth hormone-releasing hormone and growth hormone-releasing peptide as therapeutic agents to enhance growth hormone secretion in disease and aging. Recent Prog Horm Res 52:215–244

    CAS  PubMed  Google Scholar 

  • Ueharu H, Yoshida S, Kikkawa T, Kanno N, Higuchi M, Kato T, Osumi N, Kato Y (2017) Gene tracing analysis reveals the contribution of neural crest-derived cells in pituitary development. J Anat 230:373–380

  • Vankelecom H (2010) Pituitary stem/progenitor cells: embryonic players in the adult gland? Eur J Neurosci 32:2063–2081

    Article  PubMed  Google Scholar 

  • Vankelecom H, Chen J (2014) Pituitary stem cells: where do we stand? Mol Cell Endocrinol 385:2–17

    Article  CAS  PubMed  Google Scholar 

  • Vankelecom H, Gremeaux L (2010) Stem cells in the pituitary gland: a burgeoning field. Gen Comp Endocrinol 166:478–488

    Article  CAS  PubMed  Google Scholar 

  • Wachs FP, Couillard-Despres S, Engelhardt M, Wilhelm D, Ploetz S, Vroemen M, Kaesbauer J, Uyanik G, Klucken J, Karl C, Tebbing J, Svendsen C, Weidner N, Kuhn HG, Winkler J, Aigner L (2003) High efficacy of clonal growth and expansion of adult neural stem cells. Lab Invest 83:949–962

    Article  PubMed  Google Scholar 

  • Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida S, Kato T, Susa T, Cai L-Y, Nakayama M, Kato Y (2009) PROP1 coexists with SOX2 and induces PIT1-commitment cells. Biochem Biophys Res Commun 385:11–15

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Kato T, Yako H, Susa T, Cai LY, Osuna M, Inoue K, Kato Y (2011) Significant quantitative and qualitative transition in pituitary stem/progenitor cells occurs during the postnatal development of the rat anterior pituitary. J Neuroendocrinol 23:933–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida S, Higuchi M, Ueharu H, Nishimura N, Tsuda M, Nishihara H, Mitsuishi H, Kato T, Kato Y (2014) Characterization of murine pituitary-derived cell lines Tpit/F1, Tpit/E and TtT/GF. J Reprod Dev 60:295–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida S, Nishimura N, Ueharu H, Kanno N, Higuchi M, Horiguchi K, Kato T, Kato Y (2016) Isolation of adult pituitary stem/progenitor cell clusters located in the parenchyma of the rat anterior lobe. Stem Cell Res 17:318–329

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Bakke M, Parker KL (2001) Pituitary-specific knockout of steroidogenic factor 1. Mol Cell Endocrinol 185:27–32

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Gleiberman AS, Rosenfeld MG (2007) Molecular physiology of pituitary development: signaling and transcriptional networks. Physiol Rev 87:933–963

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by JSPS KAKENHI grant numbers 15K18801 to M.H., 21380184 to Y.K. and 24580435 to T.K., by a MEXT-Supported Program for the Strategic Research Foundation at Private Universities 2014-2018 and by a research grant (A) to Y.K. from the Institute of Science and Technology, Meiji University. This study was also supported by the Meiji University International Institute for BioResource Research (MUIIR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukio Kato.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 625 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higuchi, M., Yoshida, S., Kanno, N. et al. Clump formation in mouse pituitary-derived non-endocrine cell line Tpit/F1 promotes differentiation into growth-hormone-producing cells. Cell Tissue Res 369, 353–368 (2017). https://doi.org/10.1007/s00441-017-2603-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-017-2603-2

Keywords

Navigation