Skip to main content
Log in

Mitochondrial disulfide relay and its substrates: mechanisms in health and disease

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Eukaryotic cells harbor membrane-enclosed compartments to spatially separate different biochemical processes. As a result, proteins that become synthesized in the cytosol but fulfill their function in another compartment require translocation machineries. In the intermembrane space (IMS) of mitochondria, the mitochondrial disulfide relay is responsible for the import of many soluble proteins in an oxidation-dependent manner. These IMS proteins carry out important tasks and therefore their import, folding and maintenance are crucial for the remainder of the cell. In this review, we first describe the machinery for oxidative protein folding in the IMS and then focus on recent developments, which especially concern the mammalian machinery, its substrates and its physiological role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adam A, Endres M, Sirrenberg C, Lottspeich F, Neupert W, Brunner M (1999) Tim9, a new component of the TIM22.54 translocase in mitochondria. EMBO J 18:313–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen S, Balabanidou V, Sideris DP, Lisowsky T, Tokatlidis K (2005) Erv1 mediates the Mia40-dependent protein import pathway and provides a functional link to the respiratory chain by shuttling electrons to cytochrome c. J Mol Biol 353:937–944

    Article  CAS  PubMed  Google Scholar 

  • Ang SK, Lu H (2009) Deciphering structural and functional roles of individual disulfide bonds of the mitochondrial sulfhydryl oxidase Erv1p. J Biol Chem 284:28754–28761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araki K, Inaba K (2012) Structure, mechanism, and evolution of Ero1 family enzymes. Antioxid Redox Signal 16:790–799

    Article  CAS  PubMed  Google Scholar 

  • Banci L, Bertini I, Ciofi-Baffoni S, Hadjiloi T, Martinelli M, Palumaa P (2008a) Mitochondrial copper(I) transfer from Cox17 to Sco1 is coupled to electron transfer. Proc Natl Acad Sci U S A 105:6803–6808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banci L, Bertini I, Ciofi-Baffoni S, Janicka A, Martinelli M, Kozlowski H, Palumaa P (2008b) A structural-dynamical characterization of human Cox17. J Biol Chem 283:7912–7920

    Article  CAS  PubMed  Google Scholar 

  • Banci L, Bertini I, Cefaro C, Ciofi-Baffoni S, Gallo A, Martinelli M, Sideris DP, Katrakili N, Tokatlidis K (2009) MIA40 is an oxidoreductase that catalyzes oxidative protein folding in mitochondria. Nat Struct Mol Biol 16:198–206

    Article  CAS  PubMed  Google Scholar 

  • Banci L, Bertini I, Cefaro C, Cenacchi L, Ciofi-Baffoni S, Felli IC, Gallo A, Gonnelli L, Luchinat E, Sideris D, Tokatlidis K (2010) Molecular chaperone function of Mia40 triggers consecutive induced folding steps of the substrate in mitochondrial protein import. Proc Natl Acad Sci U S A 107:20190–20195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banci L, Bertini I, Calderone V, Cefaro C, Ciofi-Baffoni S, Gallo A, Kallergi E, Lionaki E, Pozidis C, Tokatlidis K (2011) Molecular recognition and substrate mimicry drive the electron-transfer process between MIA40 and ALR. Proc Natl Acad Sci U S A 108:4811–4816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banci L, Bertini I, Calderone V, Cefaro C, Ciofi-Baffoni S, Gallo A, Tokatlidis K (2012a) An electron-transfer path through an extended disulfide relay system: the case of the redox protein ALR. J Am Chem Soc 134:1442–1445

    Article  CAS  PubMed  Google Scholar 

  • Banci L, Bertini I, Ciofi-Baffoni S, Jaiswal D, Neri S, Peruzzini R, Winkelmann J (2012b) Structural characterization of CHCHD5 and CHCHD7: two atypical human twin CX9C proteins. J Struct Biol 180:190–200

    Article  CAS  PubMed  Google Scholar 

  • Banci L, Barbieri L, Luchinat E, Secci E (2013) Visualization of redox-controlled protein fold in living cells. Chem Biol 20:747–752

    Article  CAS  PubMed  Google Scholar 

  • Bauer MF, Rothbauer U, Mühlenbein N, Smith RJH, Gerbitz K-D, Neupert W, Brunner M, Hofmann S (1999) The mitochondrial TIM22 preprotein translocase is highly conserved throughout the eukaryotic kingdom. FEBS Lett 464:41–47

    Article  CAS  PubMed  Google Scholar 

  • Bauer MF, Hofmann S, Neupert W, Brunner M (2000) Protein translocation into mitochondria: the role of TIM complexes. Trends Cell Biol 10:25–31

    Article  CAS  PubMed  Google Scholar 

  • Bien M, Longen S, Wagener N, Chwalla I, Herrmann JM, Riemer J (2010) Mitochondrial disulfide bond formation is driven by intersubunit electron transfer in Erv1 and proofread by glutathione. Mol Cell 37:516–528

    Article  CAS  PubMed  Google Scholar 

  • Bihlmaier K, Mesecke N, Terziyska N, Bien M, Hell K, Herrmann JM (2007) The disulfide relay system of mitochondria is connected to the respiratory chain. J Cell Biol 179:389–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Böttinger L, Gornicka A, Czerwik T, Bragoszewski P, Loniewska-Lwowska A, Schulze-Specking A, Truscott KN, Guiard B, Milenkovic D, Chacinska A (2012) In vivo evidence for cooperation of Mia40 and Erv1 in the oxidation of mitochondrial proteins. Mol Biol Cell 23:3957–3969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cavallaro G (2010) Genome-wide analysis of eukaryotic twin CX9C proteins. Mol Biosyst 6:2459–2470

    Article  CAS  PubMed  Google Scholar 

  • Ceh-Pavia E, Ang SK, Spiller MP, Lu H (2014) The disease-associated mutation of the mitochondrial thiol oxidase Erv1 impairs cofactor binding during its catalytic reaction. Biochem J 464:449–459

    Article  CAS  PubMed  Google Scholar 

  • Chacinska A, Guiard B, Muller JM, Schulze-Specking A, Gabriel K, Kutik S, Pfanner N (2008) Mitochondrial biogenesis, switching the sorting pathway of the intermembrane space receptor Mia40. J Biol Chem 283:29723–29729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N (2009) Importing mitochondrial proteins: machineries and mechanisms. Cell 138:628–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 275:25130–25138

    Article  CAS  PubMed  Google Scholar 

  • Chatzi A, Tokatlidis K (2013) The mitochondrial intermembrane space: a hub for oxidative folding linked to protein biogenesis. Antioxid Redox Signal 19:54–62

    Article  CAS  PubMed  Google Scholar 

  • Chatzi A, Sideris DP, Katrakili N, Pozidis C, Tokatlidis K (2013) Biogenesis of yeast Mia40 - uncoupling folding from import and atypical recognition features. FEBS J 280:4960–4969

    Article  CAS  PubMed  Google Scholar 

  • Curran SP, Leuenberger D, Leverich EP, Hwang DK, Beverly KN, Koehler CM (2004) The role of Hot13p and redox chemistry in the mitochondrial TIM22 import pathway. J Biol Chem 279:43744–43751

    Article  CAS  PubMed  Google Scholar 

  • Dabir DV, Leverich EP, Kim S-K, Tsai FD, Hirasawa M, Knaff DB, Koehler CM (2007) A role for cytochrome c and cytochrome c peroxidase in electron shuttling from Erv1. EMBO J 26:4801–4811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daithankar VN, Farrell SR, Thorpe C (2009) Augmenter of liver regeneration: substrate specificity of a flavin-dependent oxidoreductase from the mitochondrial intermembrane space. Biochemistry 48:4828–4837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daithankar VN, Schaefer SA, Dong M, Bahnson BJ, Thorpe C (2010) Structure of the human sulfhydryl oxidase augmenter of liver regeneration and characterization of a human mutation causing an autosomal recessive myopathy. Biochemistry 49:6737–6745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis AJ, Sepuri NB, Holder J, Johnson AE, Jensen RE (2000) Two intermembrane space tim complexes interact with different domains of Tim23p during its import into mitochondria. J Cell Biol 150:1271–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Fonzo A, Ronchi D, Lodi T, Fassone E, Tigano M, Lamperti C, Corti S, Bordoni A, Fortunato F, Nizzardo M, Napoli L, Donadoni C, Salani S, Saladino F, Moggio M, Bresolin N, Ferrero I, Comi GP (2009) The mitochondrial disulfide relay system protein GFER is mutated in autosomal-recessive myopathy with cataract and combined respiratory-chain deficiency. Am J Hum Genet 84:594–604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Durigon R, Wang Q, Ceh Pavia E, Grant CM, Lu H (2012) Cytosolic thioredoxin system facilitates the import of mitochondrial small Tim proteins. EMBO Rep 13:916–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endo T, Yamano K, Kawano S (2011) Structural insight into the mitochondrial protein import system. Biochim Biophys Acta 1808:955–970

    Article  CAS  PubMed  Google Scholar 

  • Farrell SR, Thorpe C (2005) Augmenter of liver regeneration: a flavin-dependent sulfhydryl oxidase with cytochrome c reductase activity. Biochemistry 44:1532–1541

    Article  CAS  PubMed  Google Scholar 

  • Field LS, Furukawa Y, O’Halloran TV, Culotta VC (2003) Factors controlling the uptake of yeast copper/zinc superoxide dismutase into mitochondria. J Biol Chem 278:28052–28059

    Article  CAS  PubMed  Google Scholar 

  • Fischer M, Riemer J (2013) The mitochondrial disulfide relay system: roles in oxidative protein folding and beyond. Int J Cell Biol 2013:1–12

    Article  CAS  Google Scholar 

  • Fischer M, Horn S, Belkacemi A, Kojer K, Petrungaro C, Habich M, Ali M, Küttner V, Bien M, Kauff F, Dengjel J, Herrmann JM, Riemer J (2013) Protein import and oxidative folding in the mitochondrial intermembrane space of intact mammalian cells. Mol Biol Cell 24:2160–2170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraga H, Bech-Serra J-J, Canals F, Ortega G, Millet O, Ventura S (2014) The mitochondrial intermembrane space oxireductase Mia40 funnels the oxidative folding pathway of the cytochrome c oxidase assembly protein Cox19. J Biol Chem 289:9852–9864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furukawa Y, Torres AS, O’Halloran TV (2004) Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS. EMBO J 23:2872–2881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabriel K, Milenkovic D, Chacinska A, Müller J, Guiard B, Pfanner N, Meisinger C (2007) Novel mitochondrial intermembrane space proteins as substrates of the MIA import pathway. J Mol Biol 365:612–620

    Article  CAS  PubMed  Google Scholar 

  • Gandhi CR (2012) Augmenter of liver regeneration. Fibrogenesis Tissue Repair 5:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao C-F, Zhou FG, Wang H, Huang Y-F, Ji Q, Chen J (2009) Genetic recombinant expression and characterization of human augmenter of liver regeneration. Dig Dis Sci 54:530–537

    Article  CAS  PubMed  Google Scholar 

  • Ghezzi D, Sevrioukova I, Invernizzi F, Lamperti C, Mora M, D’Adamo P, Novara F, Zuffardi O, Uziel G, Zeviani M (2010) Severe X-linked mitochondrial encephalomyopathy associated with a mutation in apoptosis-inducing factor. Am J Hum Genet 86:639–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross DP, Burgard CA, Reddehase S, Leitch JM, Culotta VC, Hell K (2011) Mitochondrial Ccs1 contains a structural disulfide bond crucial for the import of this unconventional substrate by the disulfide relay system. Mol Biol Cell 22:3758–3767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajnóczky G, Davies E, Madesh M (2003) Calcium signaling and apoptosis. Biochem Biophys Res Commun 304:445–454

    Article  PubMed  CAS  Google Scholar 

  • Hangen E, Féraud O, Lachkar S et al (2015) Interaction between AIF and CHCHD4 regulates respiratory chain biogenesis. Mol Cell 58:1001–1014

    Article  CAS  PubMed  Google Scholar 

  • Hofmann S, Rothbauer U, Mühlenbein N, Neupert W, Gerbitz K-D, Brunner M, Bauer MF (2002) The C66W mutation in the deafness dystonia peptide 1 (DDP1) affects the formation of functional DDP1.TIM13 complexes in the mitochondrial intermembrane space. J Biol Chem 277:23287–23293

    Article  CAS  PubMed  Google Scholar 

  • Hofmann S, Rothbauer U, Mühlenbein N, Baiker K, Hell K, Bauer MF (2005) Functional and mutational characterization of human MIA40 acting during import into the mitochondrial intermembrane space. J Mol Biol 353:517–528

    Article  CAS  PubMed  Google Scholar 

  • Horn D, Zhou W, Trevisson E, Al-Ali H, Harris TK, Salviati L, Barrientos A (2010) The conserved mitochondrial twin Cx9C protein Cmc2 Is a Cmc1 homologue essential for cytochrome c oxidase biogenesis. J Biol Chem 285:15088–15099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Dong L, Outten CE (2008) The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix. J Biol Chem 283:29126–29134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson DA, Thorpe C (2015) Mia40 is a facile oxidant of unfolded reduced proteins but shows minimal isomerase activity. Arch Biochem Biophys 579:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung V, Zou P, Rhee HW, Udeshi ND, Cracan V, Svinkina T, Carr SA, Mootha VK, Ting AY (2014) Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging. Mol Cell 55:332–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilowski M, Kleespies A, de Toni EN, Donabauer B, Jauch K-W, Hengstler JG, Thasler WE (2011) Augmenter of liver regeneration (ALR) protects human hepatocytes against apoptosis. Biochem Biophys Res Commun 404:148–152

    Article  CAS  PubMed  Google Scholar 

  • Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–468

    Article  CAS  PubMed  Google Scholar 

  • Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR (2002) A stem cell molecular signature. Science 298:601–604

    Article  CAS  PubMed  Google Scholar 

  • Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472

    Article  CAS  PubMed  Google Scholar 

  • Joza N, Susin SA, Daugas E et al (2001) Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410:549–554

    Article  CAS  PubMed  Google Scholar 

  • Kallergi E, Andreadaki M, Kritsiligkou P, Katrakili N, Pozidis C, Tokatlidis K, Banci L, Bertini I, Cefaro C, Ciofi-Baffoni S, Gajda K, Peruzzini R (2012) Targeting and maturation of Erv1/ALR in the mitochondrial intermembrane space. ACS Chem Biol. doi:10.1021/cb200485b

    PubMed  Google Scholar 

  • Kamer KJ, Mootha VK (2014) MICU1 and MICU2 play nonredundant roles in the regulation of the mitochondrial calcium uniporter. EMBO Rep 15:299–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawamata H, Manfredi G (2010) Import, maturation, and function of SOD1 and its copper chaperone CCS in the mitochondrial intermembrane space. Antioxid Redox Signal 13:1375–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawano S, Yamano K, Naoe M, Momose T, Terao K, Nishikawa S-I, Watanabe N, Endo T (2009) Structural basis of yeast Tim40/Mia40 as an oxidative translocator in the mitochondrial intermembrane space. Proc Natl Acad Sci U S A 106:14403–14407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kay CWM, Elsässer C, Bittl R, Farrell SR, Thorpe C (2006) Determination of the distance between the two neutral flavin radicals in augmenter of liver regeneration by pulsed ELDOR. J Am Chem Soc 128:76–77

    Article  CAS  PubMed  Google Scholar 

  • Klöppel C, Suzuki Y, Kojer K, Petrungaro C, Longen S, Fiedler S, Keller S, Riemer J (2011) Mia40-dependent oxidation of cysteines in domain I of Ccs1 controls its distribution between mitochondria and the cytosol. Mol Biol Cell 22:3749–3757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koch JR, Schmid FX (2014a) Mia40 targets cysteines in a hydrophobic environment to direct oxidative protein folding in the mitochondria. Nat Commun 5:3041

    Article  PubMed  CAS  Google Scholar 

  • Koch JR, Schmid FX (2014b) Mia40 is optimized for function in mitochondrial oxidative protein folding and import. ACS Chem Biol 9:2049–2057

    Article  CAS  PubMed  Google Scholar 

  • Koch JR, Schmid FX (2014c) Mia40 combines thiol oxidase and disulfide isomerase activity to efficiently catalyze oxidative folding in mitochondria. J Mol Biol 426:4087–4098

    Article  CAS  PubMed  Google Scholar 

  • Koehler CM (1998) Tim9p, an essential partner subunit of Tim10p for the import of mitochondrial carrier proteins. EMBO J 17:6477–6486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koehler CM, Jarosch E, Tokatlidis K, Schmid K, Schweyen RJ, Schatz G (1998) Import of mitochondrial carriers mediated by essential proteins of the intermembrane space. Science 279:369–373

    Article  CAS  PubMed  Google Scholar 

  • Kojer K, Bien M, Gangel H, Morgan B, Dick TP, Riemer J (2012) Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state. EMBO J 31:3169–3182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojer K, Peleh V, Calabrese G, Herrmann JM, Riemer J (2015) Kinetic control by limiting glutaredoxin amounts enables thiol oxidation in the reducing mitochondrial intermembrane space. Mol Biol Cell 26:195–204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lange H, Lisowsky T, Gerber J, Mühlenhoff U, Kispal G, Lill R (2001) An essential function of the mitochondrial sulfhydryl oxidase Erv1p/ALR in the maturation of cytosolic Fe/S proteins. EMBO Rep 2:715–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leuenberger D, Bally NA, Schatz G, Koehler CM (1999) Different import pathways through the mitochondrial intermembrane space for inner membrane proteins. EMBO J 18:4816–4822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Farooq M, Sheng D, Chandramouli C, Lan T, Mahajan NK, Kini RM, Hong Y, Lisowsky T, Ge R (2012) Augmenter of liver regeneration (alr) promotes liver outgrowth during zebrafish hepatogenesis. PLoS ONE 7:e30835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisowsky T, Lee JE, Polimeno L, Francavilla A, Hofhaus G (2001) Mammalian augmenter of liver regeneration protein is a sulfhydryl oxidase. Dig Liver Dis 33:173–180

    Article  CAS  PubMed  Google Scholar 

  • Longen S, Bien M, Bihlmaier K, Kloeppel C, Kauff F, Hammermeister M, Westermann B, Herrmann JM, Riemer J (2009) Systematic analysis of the twin cx(9)c protein family. J Mol Biol 393:356–368

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Woodburn J (2005) Zinc binding stabilizes mitochondrial Tim10 in a reduced and import-competent state kinetically. J Mol Biol 353:897–910

    Article  CAS  PubMed  Google Scholar 

  • Lutz T, Neupert W, Herrmann JM (2003) Import of small Tim proteins into the mitochondrial intermembrane space. EMBO J 22:4400–4408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275

    Article  CAS  PubMed  Google Scholar 

  • Mesecke N, Terziyska N, Kozany C, Baumann F, Neupert W, Hell K, Herrmann JM (2005) A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Cell 121:1059–1069

    Article  CAS  PubMed  Google Scholar 

  • Mesecke N, Bihlmaier K, Grumbt B, Longen S, Terziyska N, Hell K, Herrmann JM (2008) The zinc-binding protein Hot13 promotes oxidation of the mitochondrial import receptor Mia40. EMBO Rep 9:1107–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer K, Buettner S, Ghezzi D, Zeviani M, Bano D, Nicotera P (2015) Loss of apoptosis-inducing factor critically affects MIA40 function. Cell Death Dis 6:e1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milenkovic D, Gabriel K, Guiard B, Schulze-Specking A, Pfanner N, Chacinska A (2007) Biogenesis of the essential Tim9-Tim10 chaperone complex of mitochondria: site-specific recognition of cysteine residues by the intermembrane space receptor Mia40. J Biol Chem 282:22472–22480

    Article  CAS  PubMed  Google Scholar 

  • Milenkovic D, Ramming T, Müller JM, Wenz L-S, Gebert N, Schulze-Specking A, Stojanovski D, Rospert S, Chacinska A (2009) Identification of the signal directing Tim9 and Tim10 into the intermembrane space of mitochondria. Mol Biol Cell 20:2530–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modjtahedi N, Tokatlidis K, Dessen P, Kroemer G (2016) Mitochondrial proteins containing coiled-coil-helix-coiled-coil-helix (CHCH) domains in health and disease. Trends Biochem Sci 41:245–260

    Article  CAS  PubMed  Google Scholar 

  • Mordas A, Tokatlidis K (2015) The MIA pathway: a key regulator of mitochondrial oxidative protein folding and biogenesis. Acc Chem Res 48:2191–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan B, Ang SK, Yan G, Lu H (2009) Zinc can play chaperone-like and inhibitor roles during import of mitochondrial small Tim proteins. J Biol Chem 284:6818–6825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller JM, Milenkovic D, Guiard B, Pfanner N, Chacinska A (2008) Precursor oxidation by Mia40 and Erv1 promotes vectorial transport of proteins into the mitochondrial intermembrane space. Mol Biol Cell 19:226–236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murari A, Thiriveedi VR, Mohammad F, Vengaldas V, Gorla M, Tammineni P, Krishnamoorthy T, Sepuri NBV (2015) Human mitochondrial MIA40 (CHCHD4) is a component of the Fe-S cluster export machinery. Biochem J 471:231–241

    Article  CAS  PubMed  Google Scholar 

  • Napoli E, Wong S, Hung C, Ross-Inta C, Bomdica P, Giulivi C (2013) Defective mitochondrial disulfide relay system, altered mitochondrial morphology and function in Huntington’s disease. Hum Mol Genet 22:989–1004

    Article  CAS  PubMed  Google Scholar 

  • Nicholson DW, Köhler H, Neupert W (1987) Import of cytochrome c into mitochondria. Cytochrome c heme lyase. Eur J Biochem 164:147–157

    Article  CAS  PubMed  Google Scholar 

  • Oswald C, Krause-Buchholz U, Rödel G (2009) Knockdown of human COX17 affects assembly and supramolecular organization of cytochrome c oxidase. J Mol Biol 389:470–479

    Article  CAS  PubMed  Google Scholar 

  • Ozer HK, Dlouhy AC, Thornton JD, Hu J, Liu Y, Barycki JJ, Balk J, Outten CE (2015) Cytosolic Fe-S cluster protein maturation and iron regulation are independent of the mitochondrial Erv1/Mia40 Import System. J Biol Chem 290:27829–27840

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pan Y, Mansfield KD, Bertozzi CC, Rudenko V, Chan DA, Giaccia AJ, Simon MC (2007) Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro. Mol Cell Biol 27:912–925

    Article  CAS  PubMed  Google Scholar 

  • Paschen SA, Rothbauer U, Káldi K, Bauer MF, Neupert W, Brunner M (2000) The role of the TIM8-13 complex in the import of Tim23 into mitochondria. EMBO J 19:6392–6400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patron M, Checchetto V, Raffaello A, Teardo E, Vecellio Reane D, Mantoan M, Granatiero V, Szabò I, De Stefani D, Rizzuto R (2014) MICU1 and MICU2 finely tune the mitochondrial Ca2+ uniporter by exerting opposite effects on MCU activity. Mol Cell 53:726–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peleh V, Cordat E, Herrmann JM (2016) Mia40 is a trans-site receptor that drives protein import into the mitochondrial intermembrane space by hydrophobic substrate binding. Elife. doi:10.7554/eLife.16177

    PubMed  PubMed Central  Google Scholar 

  • Perocchi F, Gohil VM, Girgis HS, Bao XR, McCombs JE, Palmer AE, Mootha VK (2010) MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake. Nature 467:291–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrungaro C, Zimmermann KM, Küttner V, Fischer M, Dengjel J, Bogeski I, Riemer J (2015) The Ca2+-dependent release of the Mia40-induced MICU1-MICU2 dimer from MCU regulates mitochondrial Ca2+ uptake. Cell Metab 22:721–733

    Article  CAS  PubMed  Google Scholar 

  • Plovanich M, Bogorad RL, Sancak Y, Kamer KJ, Strittmatter L, Li AA, Girgis HS, Kuchimanchi S, De Groot J, Speciner L, Taneja N, OShea J, Koteliansky V, Mootha VK (2013) MICU2, a paralog of MICU1, resides within the mitochondrial uniporter complex to regulate calcium handling. PLoS ONE 8:e55785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rae TD, Torres AS, Pufahl RA, O’Halloran TV (2001) Mechanism of Cu, Zn-superoxide dismutase activation by the human metallochaperone hCCS. J Biol Chem 276:5166–5176

    Article  CAS  PubMed  Google Scholar 

  • Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA (2002) “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298:597–600

    Article  CAS  PubMed  Google Scholar 

  • Riemer J, Bulleid N, Herrmann JM (2009) Disulfide Formation in the ER and Mitochondria: Two Solutions to a Common Process. Science 324:1284–1287

    Article  CAS  PubMed  Google Scholar 

  • Rigby K, Zhang L, Cobine PA, George GN, Winge DR (2007) Characterization of the cytochrome c oxidase assembly factor Cox19 of saccharomyces cerevisiae. J Biol Chem 282:10233–10242

    Article  CAS  PubMed  Google Scholar 

  • Rinaldi C, Grunseich C, Sevrioukova IF, Schindler A, Horkayne-Szakaly I, Lamperti C, Landouré G, Kennerson ML, Burnett BG, Bönnemann C, Biesecker LG, Ghezzi D, Zeviani M, Fischbeck KH (2012) Cowchock syndrome is associated with a mutation in apoptosis-inducing factor. Am J Hum Genet 91:1095–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13:566–578

    Article  CAS  PubMed  Google Scholar 

  • Rothbauer U, Hofmann S, Muhlenbein N, Paschen SA, Gerbitz K-DD, Neupert W, Brunner M, Bauer MF, Mühlenbein N, Paschen SA, Gerbitz K-DD, Neupert W, Brunner M, Bauer MF (2001) Role of the deafness dystonia peptide 1 (DDP1) in import of human Tim23 into the inner membrane of mitochondria. J Biol Chem 276:37327–37334

    Article  CAS  PubMed  Google Scholar 

  • Sevier CS, Kadokura H, Tam VC, Beckwith J, Fass D, Kaiser CA (2009) The prokaryotic enzyme DsbB may share key structural features with eukaryotic disulfide bond forming oxidoreductases. Protein Sci 14:1630–1642

    Article  CAS  Google Scholar 

  • Sideris DP, Petrakis N, Katrakili N, Mikropoulou D, Gallo A, Ciofi-Baffoni S, Banci L, Bertini I, Tokatlidis K (2009) A novel intermembrane space-targeting signal docks cysteines onto Mia40 during mitochondrial oxidative folding. J Cell Biol 187:1007–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirrenberg C, Endres M, Fölsch H, Stuart RA, Neupert W, Brunner M (1998) Carrier protein import into mitochondria mediated by the intermembrane proteins Tim10/Mrs11 and Tim12/Mrs5. Nature 391:912–915

    Article  CAS  PubMed  Google Scholar 

  • Spiller MP, Ang SK, Ceh-Pavia E, Fisher K, Wang Q, Rigby SEJ, Lu H (2013) Identification and characterization of mitochondrial Mia40 as an iron-sulfur protein. Biochem J 455:27–35

    Article  CAS  PubMed  Google Scholar 

  • Stojanovski D, Rissler M, Pfanner N, Meisinger C (2006) Mitochondrial morphology and protein import—A tight connection? Biochim Biophys Acta 1763:414–421

    Article  CAS  PubMed  Google Scholar 

  • Stojanovski D, Milenkovic D, Müller JM, Gabriel K, Schulze-Specking A, Baker MJ, Ryan MT, Guiard B, Pfanner N, Chacinska A (2008) Mitochondrial protein import: precursor oxidation in a ternary complex with disulfide carrier and sulfhydryl oxidase. J Cell Biol 183:195–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szklarczyk R, Wanschers BFJ, Nabuurs SB, Nouws J, Nijtmans LG, Huynen MA (2011) NDUFB7 and NDUFA8 are located at the intermembrane surface of complex I. FEBS Lett 585:737–743

    Article  CAS  PubMed  Google Scholar 

  • Tienson HL, Dabir DV, Neal SE, Loo R, Hasson SA, Boontheung P, Kim S, Loo JA, Koehler CM (2009) Reconstitution of the Mia40-Erv1 oxidative folding pathway for the small Tim proteins. Mol Biol Cell 20:3481–3490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todd LR, Damin MN, Gomathinayagam R, Horn SR, Means AR, Sankar U (2010) Growth factor erv1-like modulates Drp1 to preserve mitochondrial dynamics and function in mouse embryonic stem cells. Mol Biol Cell 21:1225–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varabyova A, Topf U, Kwiatkowska P, Wrobel L, Kaus-Drobek M, Chacinska A (2013) Mia40 and MINOS act in parallel with Ccs1 in the biogenesis of mitochondrial Sod1. FEBS J 280:4943–4959

    Article  CAS  PubMed  Google Scholar 

  • Vial S, Lu H, Allen S, Savory P, Thornton D, Sheehan J, Tokatlidis K (2002) Assembly of Tim9 and Tim10 into a functional chaperone. J Biol Chem 277:36100–36108

    Article  CAS  PubMed  Google Scholar 

  • Vogtle F-N, Burkhart JM, Rao S, Gerbeth C, Hinrichs J, Martinou J-C, Chacinska A, Sickmann A, Zahedi RP, Meisinger C (2012) Intermembrane space proteome of yeast mitochondria. Mol Cell Proteomics 11:1840–1852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • von der Malsburg K, Müller JM, Bohnert M et al (2011) Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Dev Cell 21:694–707

    Article  PubMed  CAS  Google Scholar 

  • Voronova A, Meyer-Klaucke W, Meyer T, Rompel A, Krebs B, Kazantseva J, Sillard R, Palumaa P (2007) Oxidative switches in functioning of mammalian copper chaperone Cox17. Biochem J 408:139–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92:5510–5514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb CT, Gorman MA, Lazarou M, Ryan MT, Gulbis JM (2006) Crystal structure of the mitochondrial chaperone TIM9.10 reveals a six-bladed alpha-propeller. Mol Cell 21:123–133

    Article  CAS  PubMed  Google Scholar 

  • Weckbecker D, Longen S, Riemer J, Herrmann JM (2012) Atp23 biogenesis reveals a chaperone-like folding activity of Mia40 in the IMS of mitochondria. EMBO J 31:4348–4358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkerson DC, Sankar U (2011) Mitochondria: a sulfhydryl oxidase and fission GTPase connect mitochondrial dynamics with pluripotency in embryonic stem cells. Int J Biochem Cell Biol 43:1252–1256

    Article  CAS  PubMed  Google Scholar 

  • Wrobel L, Trojanowska A, Sztolsztener ME, Chacinska A (2013) Mitochondrial protein import: Mia40 facilitates Tim22 translocation into the inner membrane of mitochondria. Mol Biol Cell 24:543–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C, Dailey TA, Dailey HA, Wang B, Rose JP (2003) The crystal structure of augmenter of liver regeneration: a mammalian FAD-dependent sulfhydryl oxidase. Protein Sci 12:1109–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Staples O, Thomas LW, Briston T, Robson M, Poon E, Simões ML, El-Emir E, Buffa FM, Ahmed A, Annear NP, Shukla D, Pedley BR, Maxwell PH, Harris AL, Ashcroft M (2012) Human CHCHD4 mitochondrial proteins regulate cellular oxygen consumption rate and metabolism and provide a critical role in hypoxia signaling and tumor progression. J Clin Invest 122:600–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu F, White SB, Zhao Q, Lee FS (2001) HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc Natl Acad Sci U S A 98:9630–9635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang J, Wang P, Huang X, Chen X, Kang J-G, Hwang PM (2013) Mitochondrial disulfide relay mediates translocation of p53 and partitions its subcellular activity. Proc Natl Acad Sci U S A 110:17356–17361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Research in the author’s laboratories is supported by the German research council (DFG) to J.R. (RI2150/1-2, RI2150/2-1 (SPP1710) and SFB1218/TP B02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Riemer.

Ethics declarations

Author disclosure statement

The authors declare that they have no conflict of interest.

Additional information

This review is part of a special issue on “Recent Advances in Mitochondrial Biology - Integrated Aspects”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdogan, A.J., Riemer, J. Mitochondrial disulfide relay and its substrates: mechanisms in health and disease. Cell Tissue Res 367, 59–72 (2017). https://doi.org/10.1007/s00441-016-2481-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2481-z

Keywords

Navigation