Skip to main content
Log in

Chordotonal organs in hemipteran insects: unique peripheral structures but conserved central organization revealed by comparative neuroanatomy

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Hemipteran insects use sophisticated vibrational communications by striking body appendages on the substrate or by oscillating the abdominal tymbal. There has been, however, little investigation of sensory channels for processing vibrational signals. Using sensory nerve stainings and low invasive confocal analyses, we demonstrate the comprehensive neuronal mapping of putative vibration-responsive chordotonal organs (COs) in stink bugs (Pentatomidae and Cydinidae) and cicadas (Cicadidae). The femoral CO (FCO) in stink bugs consists of ventral and dorsal scoloparia, homologous to distal and proximal scoloparia in locusts, which are implicated in joint movement detection and vibration detection, respectively. The ligament of the dorsal scoloparium is distally attached to the accessory extensor muscle, whereas that of the ventral scoloparium is attached to a specialized tendon. Their afferents project to the dorso-lateral neuropil and the central region of the medial ventral association center (mVAC) in the ipsilateral neuromere, where presumed dorsal scoloparium afferents and subgenual organ afferents are largely intermingled. In contrast, FCOs in cicadas have decreased dorsal scoloparium neurons and lack projections to the mVAC. The tymbal CO of stink bugs contains four sensory neurons that are distally attached to fat body cells via a ligament. Their axons project intersegmentally to the dorsal region of mVACs in all neuromeres. Together with comparisons of COs in different insect groups, the results suggest that hemipteran COs have undergone structural modification for achieving faster signaling of resonating peripheral tissues. The conserved projection patterns of COs suggest functional importance of the FCO and subgenual organ for vibrational communications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

abCO:

Abdominal chordotonal organ

AEM:

Accessory extensor muscle

AN:

Auditory nerve

CG:

Central ganglion

CNS:

Central nervous system

CO:

Chordotonal organ

DC:

Descending connective

DET:

Distal extensor tendon

DL:

Dorsal ligament

DS:

Dorsal scoloparium

FCO:

Femoral chordotonal organ

F-T Joint:

femoro-tibial joint

JO:

Johnston’s organ

MLN:

Main leg nerve

PG:

Prothoracic ganglion

PES:

Proximal extracellular space

PlCO:

Pleural CO

SC:

Scolopale cap

SEG:

Subesophageal ganglion

Sep:

Septum

SGO:

Subgenual organ

SR:

Strand receptor

tyCO:

Tymbal CO

TeN:

Tensor nerve

TEPS:

Tibial extensor pendant sclerite

TyN:

Tymbal nerve

VL:

Ventral ligament

VS:

Ventral scoloparium

WGA:

Wheat germ agglutinin

References

  • Bacon JP, Altman JS (1977) A silver intensification method for cobalt-filled neurons in wholemount preparations. Brain Res 138:359–363

    Article  CAS  PubMed  Google Scholar 

  • Bennet-Clark HC (1998) Size and scale constraints in insect sound communication. Philos Trans R Soc Lond B 353:407–419

    Article  Google Scholar 

  • Boyan GS (1993) Another look at insect audition: the tympanic receptors as an evolutionary specialization of the chordotonal system. J Insect Physiol 39:187–200

    Article  Google Scholar 

  • Bräunig P (1982) Strand receptors with central cell bodies in the proximal leg joints of orthopterous insects. Cell Tissue Res 222:647–654

    Article  PubMed  Google Scholar 

  • Bräunig P, Hustert R, Pflüger HJ (1981) Distribution and specific central projections of mechanoreceptors in the thorax and proximal leg joints of locusts. Cell Tissue Res 216:57–77

    Article  PubMed  Google Scholar 

  • Burns MD (1974) Structure and physiology of the locust femoral chordotonal organ. J Insect Physiol 20:1319–1339

    Article  CAS  PubMed  Google Scholar 

  • Claridge MF, Morgan JC, Moulds MS (1999) Substrate-transmitted acoustic signals of the primitive cicada, Tettigarcta crinita Distant (Hemiptera Cicadoidea, Tettigarctidae). J Nat Hist 33:1831–1834

    Article  Google Scholar 

  • Cocroft RB, Rodríguez RL (2005) The behavioral ecology of insect vibrational communication. Bioscience 55:323–334

    Article  Google Scholar 

  • Cocroft RB, Tieu TD, Hoy RR, Miles RN (2000) Directionality in the mechanical response to substrate vibration in a treehopper (Hemiptera: Membracidae: Umbonia crassicornis). J Comp Physiol A 186:695–705

    Article  CAS  PubMed  Google Scholar 

  • Čokl A (1983) Functional properties of vibroreceptors in the legs of Nezara viridula (L.). (Heteroptera, Pentatomidae). J Comp Physiol A 150:261–269

    Article  Google Scholar 

  • Čokl A (2008) Stink bug interaction with host plants during communication. J Insect Physiol 54:1113–1124

    Article  PubMed  Google Scholar 

  • Čokl A, Virant-Doberlet M (2003) Communication with substrate-borne signals in small plant-dwelling insects. Annu Rev Entomol 48:29–50

    Article  PubMed  Google Scholar 

  • Čokl A, Virant-Doberlet M, Stritih N (2000) Temporal and spectral properties of the songs of the southern green stink bug Nezara viridula (L.) from Slovenia. Pflüger Arch Eur J Physiol 439:168–170

    Article  Google Scholar 

  • Čokl A, Virant-Doberlet M, Zorović M (2006) Sense organs involved in the vibratory communication of bugs. In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behaviour, ecology and evolution. CRC, Boca Raton, pp 71–80

    Google Scholar 

  • Cui Y, Xie Q, Hua J, Dang K, Zhou J, Liu X, Wang G, Yu X, Bu W (2013) Phylogenomics of Hemiptera (Insecta: Paraneoptera) based on mitochondrial genomes. Syst Entomol 38:233–245

    Article  Google Scholar 

  • Debaisieux P (1935) Organes scolopidiaux des pattes d’insectes. I. Lépidoptères et Trichoptères. Cellule 44:271–314

    Google Scholar 

  • Debaisieux P (1938) Organes scolopidiaux des pattes d’insectes. II. Cellule 47:77–202

    Google Scholar 

  • Devetak D, Pabst MN (1994) Structure of the subgenual organ in the green lacewing Chrysoperla carnea. Tissue Cell 26:249–257

    Article  CAS  PubMed  Google Scholar 

  • Doolan JM, Young D (1981) The organization of the auditory organ of the bladder cicada, Cystosoma saundersii. Philos Trans R Soc Lond B 291:525–540

    Article  Google Scholar 

  • Eberhard MJB, Lang D, Metscher B, Pass G, Picker MD, Wolf H (2010) Structure and sensory physiology of the leg scolopidial organs in Mantophasmatodea and their role in vibrational communication. Arthropod Struct Dev 39:230–241

    Article  CAS  PubMed  Google Scholar 

  • Evans PD, O’Shea M (1978) The identification of an octopaminergic neurone and the modulation of a myogenetic rhythm in the locust. J Exp Biol 73:235–260

    CAS  PubMed  Google Scholar 

  • Field LH, Burrows M (1982) Reflex effects of the femoral chordotonal organ upon leg motor neurones of the locust. J Exp Biol 101:265–285

    Google Scholar 

  • Field LH, Matheson T (1998) Chordotonal organs of insects. Adv Insect Physiol 27:1–228

    Article  Google Scholar 

  • Field LH, Pflüger HJ (1989) The femoral chordotonal organ: a bifunctional orthopteran (Locusta migratoria) sense organ? Comp Biochem Physiol 93A:729–743

    Article  Google Scholar 

  • Furth DG, Suzuki K (1990) Comparative morphology of the tibial flexor and extensor tendons in insects. Syst Entomol 15:433–441

    Article  Google Scholar 

  • Gogala M, Čokl A, Drašler K, Blaževič A (1974) Substrate-borne sound communication in Cydnidae (Heteroptera). J Comp Physiol 94:25–31

    Article  Google Scholar 

  • Halex H, Kaiser W, Kalmring K (1988) Projection areas and branching patterns of the tympanal receptor cells in migratory locusts, Locusta migratoria and Schistocerca gregaria. Cell Tissue Res 253:517–528

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K (1985) Alternative mating strategies in the water strider Gerris elongates (Heteroptera, Gerridae). Behav Ecol Sociobiol 16:301–306

    Article  Google Scholar 

  • Hill PSM (2008) Vibrational communication in animals. Harvard University Press, Cambridge

    Google Scholar 

  • Hoffmann T, Koch UT, Bässler U (1985) Physiology of the femoral chordotonal organ in the stick insect Cuniculina impigra. J Exp Biol 114:207–223

    Google Scholar 

  • Hustert R (1978) Segmental and intersegmental projections from primary fibres of insect mechanoreceptors. Cell Tissue Res 194:337–351

    Article  CAS  PubMed  Google Scholar 

  • Jeram S, Čokl A (1996) Mechanoreceptors in insects: Johnston’s organ in Nezara viridula (L.) (Pentatomidae, Heteroptera,). Pflugers Arch 431:281–282

    Article  Google Scholar 

  • Jeram S, Pabst MA (1996) Johnston’s organ and central organ in Nezara viridula (L.) (Heteroptera, Pentatomidae). Tissue Cell 28:227–235

    Article  CAS  PubMed  Google Scholar 

  • Kavčič A, Čokl A, Laumann RA, Blassioli-Moraes MC, Borges M (2013) Tremulatory and abdomen vibration signals enable communication through air in the stink bug Euschistus heros. PLoS ONE 8, e56503

    Article  PubMed  PubMed Central  Google Scholar 

  • Kittmann R, Schmitz J (1992) Functional specialization of the scoloparia of the femoral chordotonal organ in stick insects. J Exp Biol 173:91–108

    Google Scholar 

  • Koczor S, Čokl A (2014) Percussion signals of Lygus rugulipennis Poppius (Heteroptera: Miridae) Cent Eur J Biol 9:543–549

    Google Scholar 

  • Kristoffersen L, Hansson BS, Anderbrandt O, Larsson MC (2008) Aglomerular hemipteran antennal lobes–basic neuroanatomy of a small nose. Chem Senses 33:771–778

    Article  PubMed  Google Scholar 

  • Lakes-Harlan R, Strauß J (2014) Functional morphology and evolutionary diversity of vibration receptors in insects. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying Vibrational Communication. Springer, Heidelberg, pp 277–302

    Google Scholar 

  • Lakes-Harlan R, Stölting H, Stumpner A (1999) Convergent evolution of insect hearing organs from a preadaptive structure. Proc R Soc Lond B 266:1161–1167

    Article  Google Scholar 

  • Laumann RA, Kavčič A, Moraes MCB, Borges M, Čokl A (2013) Reproductive behaviour and vibratory communication of the neotropical predatory stink bug Podisus nigrispinus. Physiol Entomol 38:71–80

    Article  Google Scholar 

  • Lipovšek L, Pabst MA, Devetak D (1999) Femoral chordotonal organ in the legs of an insect, Chrysoperla carnea (Neuroptera). Tissue Cell 31:154–162

    Article  PubMed  Google Scholar 

  • Lomas KF, Greenwood DR, Windmill JFC, Jackson JC, Corfield J, Parsons S (2012) Discovery of a lipid synthesising organ in the auditory system of an insect. PLoS ONE 7, e51486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matheson T (1990) Responses and locations of neurones in the locust metathoracic femoral chordotonal organ. J Comp Physiol A 166:915–927

    Article  Google Scholar 

  • Matheson T (1992) Morphology of the central projections of physiologically characterised neurones from the locust metathoracic femoral chordotonal organ. J Comp Physiol A 170:101–120

    Google Scholar 

  • Matheson T, Field LH (1990) Innervation of the metathoracic femoral chordotonal organ of Locusta migratoria. Cell Tissue Res 259:551–560

    Article  Google Scholar 

  • McBrien HL, Millar JG (2003) Substrate-borne vibrational signals of the consperse stink bug (Hemiptera: Pentatomidae). Can Entomol 135:555–567

    Article  Google Scholar 

  • Michel K, Amon T, Čokl A (1983) The morphology of the leg scolopidial organs in Nezara viridula (L.) (Heteroptera, Pentatomidae). Rev Can Biol Exp 42:139–150

    Google Scholar 

  • Michelsen A, Fink F, Gogala M, Traue D (1982) Plants as transmission channels for insect vibrational songs. Behav Ecol Sociobiol 11:269–281

    Article  Google Scholar 

  • Miklas N, Stritih N, Čokl A, Virant-Doberlet M, Renou M (2001) The influence of substrate on male responsiveness to the female calling song in Nezara viridula. J Insect Behav 14:313–332

    Article  Google Scholar 

  • Moraes MCB, Laumann RA, Čokl A, Borges M (2005) Vibratory signals of four Neotropical stink bug species. Physiol Entomol 30:175–188

    Article  Google Scholar 

  • Moran DT, Varela FJ, Rowley JC III (1977) Evidence for active role of cilia in sensory transduction. Proc Natl Acad Sci U S A 74:793–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukai H, Hironaka M, Tojo S, Nomakuchi S (2012) Maternal vibration induces synchronous hatching in a subsocial burrower bug. Anim Behav 84:1443–1448

    Article  Google Scholar 

  • Mukai H, Hironaka M, Tojo S, Nomakuchi S (2014) Maternal vibration: An important cue for embryo hatching in a subsocial shield bug. PLoS ONE 9, e87932

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishino H (2000) Topographic mapping of the axons of the femoral chordotonal organ neurons in the cricket Gryllus bimaculatus. Cell Tissue Res 299:145–157

    Article  CAS  PubMed  Google Scholar 

  • Nishino H (2003) Somatotopic mapping of chordotonal organ neurons in a primitive ensiferan, the New Zealand tree weta Hemidenia femorata: I. Femoral chordotonal organ. J Comp Neurol 464:312–326

    Article  PubMed  Google Scholar 

  • Nishino H, Filed LH (2003) Somatotopic mapping of chordotonal organ neurons in a primitive ensiferan, the New Zealand tree weta Hemideina femorata: II. Complex tibial organ. J Comp Neurol 464:327–342

    Article  PubMed  Google Scholar 

  • Nomakuchi S, Yanagi T, Baba N, Takahira A, Hironaka M, Filippi L (2012) Provisioning call by mothers of a subsocial shield bug. J Zool 288:50–56

    Article  Google Scholar 

  • Nowel MS, Shelton PMJ, Stephen RO (1995) Functional organisation of the metathoracic femoral chordotonal organ in the cricket Acheta domesticus. J Exp Biol 198:1977–1988

    PubMed  Google Scholar 

  • Numata H, Kon M, Fujii H, Hidaka T (1989) Sound production in the bean bug, Riptortus clavatus Thunberg (Heteroptera: Alydidae). Appl Entomol Zool 24:169–173

    Google Scholar 

  • Oldfield BP (1988) Tonotopic organization of the insect auditory pathway. Trends Neurosci 11:267–270

    Article  CAS  PubMed  Google Scholar 

  • Pflüger HJ, Bräunig P, Hustert R (1981) Distribution and specific central projections of mechanoreceptors in the thorax and proximal leg joints of locusts. Cell Tissue Res 216:79–96

    Article  PubMed  Google Scholar 

  • Pflüger HJ, Bräunig P, Hustert R (1988) The organization of mechanosensory neuropiles in locust thoracic ganglia. Philos Trans R Soc Lond B 321:1–26

    Article  Google Scholar 

  • Römer H, Marquart V, Hardt M (1988) Organization of a sensory neuropile in the auditory pathway of two groups of Orthoptera. J Comp Neurol 275:201–215

    Article  PubMed  Google Scholar 

  • >Shaw SR (1994) Detection of airborne sound by a cockroach ‘vibration detector’: a possible missing link in insect auditory evolution. J Exp Biol 193:13–47

    PubMed  Google Scholar 

  • Shelton PMJ, Stephen RO, Scott JJA, Tindall AR (1992) The apodeme complex of the femoral chordotonal organ in the metathoracic leg of the locust Schistocerca gregaria. J Exp Biol 163:345–358

    Google Scholar 

  • Simmons P, Young D (1978) The tymbal mechanism and song patterns of the bladder cicada, Cystosoma saundersii. J Exp Biol 76:27–45

    Google Scholar 

  • Stein W, Sauer AE (1999) Physiology and vibration-sensitive afferents in the femoral chordotonal organ of the stick insect. J Comp Physiol 184:253–263

    Article  Google Scholar 

  • Stölting H, Stumpner A (1998) Tonotopic organization of auditory receptors of the bushcricket Pholidoptera griseoaptera (Tettigoniidae, Decticinae). Cell Tissue Res 294:377–386

    Article  PubMed  Google Scholar 

  • Stölting H, Moore TE, Lakes-Harlan R (2002) Substrate vibrations during acoustic signaling in the cicada Okanagana rimosa. J Insect Sci 2:2–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Strauß J, Lakes-Harlan R (2013) Sensory neuroanatomy of stick insects highlights the evolutionary diversity of the orthopteroid subgenual organ complex. J Comp Neurol 521:3791–3803

    Article  PubMed  Google Scholar 

  • Stritih N (2009) Anatomy and physiology of a set of low-frequency vibratory interneurons in a nonhearing ensiferan (Troglophilus neglectus, Rhaphidophoridae). J Comp Neurol 516:519–532

    Article  PubMed  Google Scholar 

  • Stumpner A (1996) Tonotopic organization of the hearing organ in a bushcricket: physiological characterization and complete staining of auditory receptor cells. Naturwissenschaften 83:81–84

    CAS  Google Scholar 

  • Stumpner A, Von Helversen D (2001) Evolution and function of auditory systems in insects. Naturwissenschaften 88:159–170

    Article  CAS  PubMed  Google Scholar 

  • Taki H, Kuroki S, Nomura M (2005) Taxonomic diversity within the Japanese green lacewing, Chrysoperla carnea (Neuroptera: Chrysopidae), identified by courtship song analyses and crossing tests. J Ethol 23:57–61

    Article  Google Scholar 

  • Van Staaden MJ, Römer H (1998) Evolutionary transition from stretch to hearing organs in ancient grasshoppers. Nature 394:773–776

    Article  Google Scholar 

  • Virant-Doberlet M, Čokl A (2004) Vibrational communication in insects. Neotropical Entomol 33:121–134

    Article  Google Scholar 

  • Wang Y, Chen J, Jiang L-Y, Qiao G-X (2015) Hemipteran mitochondrial genomes: features, structures and implications for phylogeny. Int J Mol Sci 16:12382–12404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wohlers DW, Huber F (1985) Topographical organization of the auditory pathway within the prothoracic ganglion of the cricket Gryllus campestris L. Cell Tissue Res 239:555–565

    Article  Google Scholar 

  • Wohlers DW, Williams JLD, Huber F, Moore TE (1979) Central projections of fibers in the auditory and tensor nerves of cicadas (Homeoptera: Cicadidae). Cell Tissue Res 203:35–51

    Article  CAS  PubMed  Google Scholar 

  • Wolfrum U (1990) Actin filaments: the main components of the scolopale in insect sensilla. Cell Tissue Res 261:85–96

    Article  Google Scholar 

  • Yack J (2004) The structure and function of auditory chordotonal organs in insects. Micros Res Tech 63:315–337

    Article  Google Scholar 

  • Young D (1975) Chordotonal organs associated with the sound producing apparatus of cicadas (Insecta, Homoptera). Z Morph Tiere 81:111–135

    Article  Google Scholar 

  • Young D, Hill KG (1977) Structure and function of the auditory system of the cicada, Cystosoma saundersii. J Comp Physiol A 117:23–45

    Article  Google Scholar 

  • Zorović M (2011) Temporal processing of vibratory communication signals at the level of ascending interneurons in Nezara viridula (Hemiptera: Pentatomidae). PLoS ONE 6, e26843

    Article  PubMed  PubMed Central  Google Scholar 

  • Zorović M, Prešern J, Čokl A (2008) Morphology and physiology of vibratory interneurons in the thoracic ganglia of the southern green stinkbug Nezara viridula (L.). J Comp Neurol 508:365–381

    Article  PubMed  Google Scholar 

  • Žunič A, Čokl A, Virant-Doberlet M, Millar JG (2008) Communication with signals produced by abdominal vibration, tremulation, and percussion in Podisus maculiventris (Heteroptera: Pentatomidae). Ann Entomol Soc Am 101:1169–1178

    Article  Google Scholar 

  • Zych AF, Mankin RW, Gillooly JF, Forman E (2012) Stridulation by Jadera haematoloma (Hemiptera: Rhopalidae): production mechanism and associated behaviors. Ann Entomol Soc Am 105:118–127

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Innovative Materials Engineering Based on Biological Diversity in Grant-in-Aid for Scientific Research on Innovative Areas (project number: 80332477) to HN and TT, Council for Science, Technology and Innovation, Cross-ministerial Strategic Innovation Promotion Program to TT and Grant-in-Aid for JSPS Fellow (14 J30005) and Young Scientists (B) (15 K18618) to HM. We thank K. Katoh for collecting L. bihamatus, Dr. T. Ichikawa (Kyusyu University) for supplying Z. atratus and Drs. T. Ishikawa (Tokyo University of Agriculture), Niels Skals (University of Copenhagen) and two anonymous reviewers for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Nishino.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Staining procedures. (a, b) Examples of retrograde staining of the main leg nerve (MLN) with microruby in P. stali (a) and NiCl2 (reacted with rubeanic acid) in P. Japonensis (b). c An example of anterograde staining of three peripheral nerves with microruby to label their axon terminalss in the central ganglion (CG). d An unfixed central ganglion reacted with rubeanic acid in which the tymbal nerve (left) and the metathoracic MLN (right) were retrogradely labeled with NiCl2. PG prothoracic ganglion. eg Fat body cells in the body lumen of P. stali at low (e), mid- (f) and high magnifications (g, stained with toluidine blue). Scale bars (a, b, e) 1 mm; (c, f) 500 μm; (d) 200 μm; (g) 20 μm. (GIF 437 kb)

High resolution image (TIF 12863 kb)

Fig. S2

Anterograde labeling of four nerves innervating the proximal region of the abdomen. a Nomenclature of peripheral nerves in the central ganglion (CG). bg Projections of N1 (b), N2 (c) and N3 (d) indicating one or two CO afferents projecting to the mVAC for each nerve. They have no axons that ascend to the brain. hl Projections of the tymbal nerve (TN) showing four CO afferents (indicated by black arrows in h and i) in prothoracic (j), mesothoracic (k) and metathoracic neuromeres (l). Two CO afferents have collaterals that terminate in the antennal mechanosensory and motor center in the brain (indicated by yellow arrows in h and i). See Fig. 7 for details. Scale bars (bg) 100 μm; (h, i) 200 μm; (jl) 50 μm. (GIF 535 kb)

High resolution image (TIF 12.8 mb)

Fig. S3

Projection patterns of two populations of abdominal COs. a, b Anterograde staining of the most peripheral dorsal branch of the primary nerve in the fifth abdominal segment, showing projections of hair receptors confined to the most ventral neuropil. c, d Anterograde staining of the nerve branch innervating the pleural CO in the fifth (left) and sixth abdominal segments showing a single afferent that has collaterals in the dorsal region of mVACs in the meso- and metathoracic neuromeres (d) and terminate in the prothoracic neuromere. e-h, Anterograde staining of the distal tip of the nerve containing only the pleural CO (right, g) and more proximal nerve branch containing only ventral COs (e, f) ventral COs, revealing that the ventral CO has localized branches in the metathoracic neuromere. Scale bars (a, c, e, g) 100 μm; (b, d, f, h) 50 μm. (GIF 627 kb)

High resolution image (TIF 17346 kb)

Fig. S4

Retrograde labeling of prothoracic FCO neurons (magenta) and surrounding structures (green) in P. stali, viewed anteriorly. (AVI 6428 kb)

Fig. S5

Retrograde labeling of prothoracic FCO neurons (magenta) and F-action filaments (green) in P. Japonensis showing different scolopale structures of dorsal scoloparium neurons (surrounded by white line) and ventral scoloparium neurons. (AVI 2256 kb)

Fig. S6

Anterograde labeling of the main metathoracic leg nerve (green) and the tymbal nerve (magenta) in P. stali showing projections of FCO/SGO afferents (green) and tymbal CO afferents (magenta) to the mVAC, viewed anteriorly. (AVI 2976 kb)

Fig. S7

Anterograde labeling of the auditory nerve (left, magenta) and tensor nerve (left, green) and the main metathoracic leg nerve (right, green) in L. bihamatus showing that auditory nerve afferents are more dorsally located than tensor nerve afferents in the mVAC and that metathoracic FCO afferents do not enter the mVAC. (AVI 5763 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishino, H., Mukai, H. & Takanashi, T. Chordotonal organs in hemipteran insects: unique peripheral structures but conserved central organization revealed by comparative neuroanatomy. Cell Tissue Res 366, 549–572 (2016). https://doi.org/10.1007/s00441-016-2480-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2480-0

Keywords

Navigation