Skip to main content

Advertisement

Log in

Runx2 acts downstream of C/EBPβ to regulate the differentiation of uterine stromal cells in mice

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Although Runx2 is involved in the regulation of cellular differentiation, its physiological roles in the differentiation of uterine stromal cells during decidualization still remain unknown. The aim of this study was to examine the expression, regulation and function of Runx2 in mouse uterus during decidualization. The results showed that Runx2 was highly expressed in the decidua and oil-induced decidualized cells. In the uterine stromal cells, recombinant human Runx2 (rRunx2) could induce the expression of Prl8a2 and Prl3c1 which are two well-known differentiation markers for decidualization, while inhibition of Runx2 with specific siRNA reduced their expression. Further study found that rRunx2 could improve the expression of Prl8a2 and Prl3c1 in the C/EBPβ siRNA-transfected stromal cells. In the stromal cells, cAMP analogue 8-Br-cAMP could induce the expression of Runx2. Moreover, the induction was blocked by PKA inhibitor H89. Simultaneously, attenuation of C/EBPβ with siRNA could also reduce the cAMP-induced Runx2 expression. Furthermore, siRNA-mediated silencing of Runx2 expression alleviated the effects of cAMP on the differentiation of stromal cells. Runx2 might act downstream of C/EBPβ to regulate the expression of Cox-2, Vegf and Mmp9 in the uterine stromal cells. Collectively, Runx2 may play an important role during mouse decidualization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bai ZK, Li DD, Guo CH, Yang ZQ, Cao H, Guo B, Yue ZP (2015) Differential expression and regulation of Runx1 in mouse uterus during the peri-implantation period. Cell Tissue Res 362:231–240

    Article  CAS  PubMed  Google Scholar 

  • Blyth K, Vaillant F, Jenkins A, McDonald L, Pringle MA, Huser C, Stein T, Neil J, Cameron ER (2010) Runx2 in normal tissues and cancer cells: A developing story. Blood Cells Mol Dis 45:117–123

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Belton RJ Jr, Nowak RA (2009) Basigin-mediated gene expression changes in mouse uterine stromal cells during implantation. Endocrinology 150:966–976

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Ghori-Javed FY, Rashid H, Adhami MD, Serra R, Gutierrez SE, Javed A (2014) Runx2 regulates endochondral ossification through control of chondrocyte proliferation and differentiation. J Bone Miner Res 29:2653–2665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clementi C, Tripurani SK, Large MJ, Edson MA, Creighton CJ, Hawkins SM, Kovanci E, Kaartinen V, Lydon JP, Pangas SA, DeMayo FJ, Matzuk MM (2013) Activin-like kinase 2 functions in peri-implantation uterine signaling in mice and humans. PLoS Genet 9, e1003863

    Article  PubMed  PubMed Central  Google Scholar 

  • Dey SK, Lim H, Das SK, Reese J, Paria BC, Daikoku T, Wang H (2004) Molecular cues to implantation. Endocr Rev 25:341–373

    Article  CAS  PubMed  Google Scholar 

  • Fujita T, Azuma Y, Fukuyama R, Hattori Y, Yoshida C, Koida M, Ogita K, Komori T (2004) Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling. J Cell Biol 166:85–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gellersen B, Brosens J (2003) Cyclic AMP and progesterone receptor cross-talk in human endometrium: a decidualizing affair. J Endocrinol 178:357–372

    Article  CAS  PubMed  Google Scholar 

  • Henriquez B, Hepp M, Merino P, Sepulveda H, van Wijnen AJ, Lian JB, Stein GS, Stein JL, Montecino M (2011) C/EBPβ binds the P1 promoter of the Runx2 gene and up-regulates Runx2 transcription in osteoblastic cells. J Cell Physiol 226:3043–3052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inada M, Yasui T, Nomura S, Miyake S, Deguchi K, Himeno M, Sato M, Yamagiwa H, Kimura T, Yasui N, Ochi T, Endo N, Kitamura Y, Kishimoto T, Komori T (1999) Maturational disturbance of chondrocytes in Cbfa1-deficient mice. Dev Dyn 214:279–290

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Bae SC, Chuang LS (2015) The RUNX family: developmental regulators in cancer. Nat Rev Cancer 15:81–95

    Article  CAS  PubMed  Google Scholar 

  • Klauber N, Rohan RM, Flynn E, D’Amato RJ (1997) Critical components of the female reproductive pathway are suppressed by the angiogenesis inhibitor AGM-1470. Nat Med 3:443–446

    Article  CAS  PubMed  Google Scholar 

  • Kommagani R, Szwarc MM, Kovanci E, Gibbons WE, Putluri N, Maity S, Creighton CJ, Sreekumar A, DeMayo FJ, Lydon JP, O’Malley BW (2013) Acceleration of the glycolytic flux by steroid receptor coactivator-2 is essential for endometrial decidualization. PLoS Genet 9, e1003900

    Article  PubMed  PubMed Central  Google Scholar 

  • Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764

    Article  CAS  PubMed  Google Scholar 

  • Li DD, Yang ZQ, Guo CH, Yue L, Duan CC, Cao H, Guo B, Yue ZP (2015) Hmgn1 acts downstream of C/EBPβ to regulate the decidualization of uterine stromal cells in mice. Cell Cycle 14:3461–3474

    Article  CAS  PubMed  Google Scholar 

  • Liao Y, Jiang Y, He H, Ni H, Tu Z, Zhang S, Wang B, Lou J, Quan S, Wang H (2015) NEDD8-mediated neddylation is required for human endometrial stromal proliferation and decidualization. Hum Reprod 30:1665–1676

    Article  PubMed  Google Scholar 

  • Mantena SR, Kannan A, Cheon YP, Li Q, Johnson PF, Bagchi IC, Bagchi MK (2006) C/EBPβ is a critical mediator of steroid hormone-regulated cell proliferation and differentiation in the uterine epithelium and stroma. Proc Natl Acad Sci USA 103:1870–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto H, Ma WG, Daikoku T, Zhao X, Paria BC, Das SK, Trzaskos JM, Dey SK (2002) Cyclooxygenase-2 differentially directs uterine angiogenesis during implantation in mice. J Biol Chem 277:29260–29267

    Article  CAS  PubMed  Google Scholar 

  • McConaha ME, Eckstrum K, An J, Steinle JJ, Bany BM (2011) Microarray assessment of the influence of the conceptus on gene expression in the mouse uterus during decidualization. Reproduction 141:511–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papamentzelopoulou M, Mavrogianni D, Dinopoulou V, Theofanakis H, Malamas F, Marinopoulos S, Bletsa R, Anagnostou E, Kallianidis K, Loutradis D (2012) Detection of RUNX2 gene expression in cumulus cells in women undergoing controlled ovarian stimulation. Reprod Biol Endocrinol 10:99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park ES, Lind AK, Dahm-Kähler P, Brännström M, Carletti MZ, Christenson LK, Curry TE Jr, Jo M (2010) RUNX2 transcription factor regulates gene expression in luteinizing granulose cells of rat ovaries. Mol Endocrinol 24:846–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park ES, Park J, Franceschi RT, Jo M (2012) The role for runt related transcription factor 2 (RUNX2) as a transcriptional repressor in luteinizing granulose cells. Mol Cell Endocrinol 362:165–175

    Article  CAS  PubMed  Google Scholar 

  • Pratap J, Javed A, Languino LR, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2005) The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol Cell Biol 25:8581–8591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun SS, Zhang L, Yang J, Zhou X (2015) Role of runt-related transcription factor 2 in signal network of tumors as an inter-mediator. Cancer Lett 361:1–7

    Article  CAS  PubMed  Google Scholar 

  • Tian XC, Wang QY, Li DD, Wang ST, Yang ZQ, Guo B, Yue ZP (2013) Differential expression and regulation of Cryab in mouse uterus during preimplantation period. Reproduction 145:577–585

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Taylor RN, Bagchi IC, Bagchi MK (2012) Regulation of human endometrial stromal proliferation and differentiation by C/EBPβ involves cyclin E-cdk2 and STAT3. Mol Endocrinol 26:2016–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida CA, Yamamoto H, Fujita T, Furuichi T, Ito K, Inoue K, Yamana K, Zanma A, Takada K, Ito Y, Komori T (2004) Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Genes Dev 18:952–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zelzer E, Glotzer DJ, Hartmann C, Thomas D, Fukai N, Soker S, Olsen BR (2001) Tissue specific regulation of VEGF expression during bone development requires Cbfa1/Runx2. Mech Dev 106:97–106

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Lin H, Kong S, Wang S, Wang H, Wang H, Armant DR (2013) Physiological and molecular determinants of embryo implantation. Mol Aspects Med 34:939–980

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Special Funds for Scientific Research on Public Causes (201303119) and National Natural Science Foundation of China (31472158 and 31372390).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, CH., Yue, ZP., Bai, ZK. et al. Runx2 acts downstream of C/EBPβ to regulate the differentiation of uterine stromal cells in mice. Cell Tissue Res 366, 393–401 (2016). https://doi.org/10.1007/s00441-016-2412-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2412-z

Keywords

Navigation