Skip to main content

Advertisement

Log in

Tissue underlying the intestinal epithelium elicits proliferation of intestinal stem cells following cytotoxic damage

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The goals of this study were to document the proliferative response of intestinal stem cells (ISCs) during regeneration after damage from doxorubicin (DXR), and to characterize the signals responsible for ISC activation. To this end, jejuni from DXR-treated mice were harvested for histology, assessment of ISC numbers and proliferation by flow cytometry, crypt culture, and RNA analyses. Histology showed that crypt depth and width were increased 4 days after DXR. At this time point, flow cytometry on tissue collected 1 h after EdU administration revealed increased numbers of CD24loUEA ISCs and increased percentage of ISCs cycling. In culture, crypts harvested from DXR-treated mice were equally proliferative as those of control mice. Addition of subepithelial intestinal tissue (SET) collected 4 days after DXR elicited increased budding (1.4 ± 0.3 vs. 5.1 ± 1.0 buds per enteroid). Microarray analysis of SET collected 4 days after DXR revealed 1030 differentially expressed transcripts. Cross-comparison of Gene Ontology terms considered relevant to ISC activation pointed to 10 candidate genes. Of these, the epidermal growth factor (EGF) family member amphiregulin and the BMP antagonist chordin-like 2 were chosen for further study. In crypt culture, amphiregulin alone did not elicit significant budding, but amphiregulin in combination with BMP antagonism showed marked synergism (yielding 6.3 ± 0.5 buds per enteroid). These data suggest a critical role for underlying tissue in regulating ISC behavior after damage, and point to synergism between amphiregulin and chordin-like 2 as factors which may account for activation of ISCs in the regenerative phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Auclair BA, Benoit YD, Rivard N, Mishina Y, Perreault N (2007) Bone morphogenetic protein signaling is essential for terminal differentiation of the intestinal secretory cell lineage. Gastroenterology 133:887–896

    Article  CAS  PubMed  Google Scholar 

  • Barker N, van Oudenaarden A, Clevers H (2012) Identifying the stem cell of the intestinal crypt: strategies and pitfalls. Cell Stem Cell 11:452–460

    Article  CAS  PubMed  Google Scholar 

  • Batts LE, Polk DB, Dubois RN, Kulessa H (2006) BMP signaling is required for intestinal growth and morphogenesis. Dev Dyn 235:1563–1570

    Article  CAS  PubMed  Google Scholar 

  • Berasain C, Avila MA (2014) Amphiregulin. Semin Cell Dev Biol 23:00006–00008

    Google Scholar 

  • Buczacki SJ, Zecchini HI, Nicholson AM, Russell R, Vermeulen L, Kemp R, Winton DJ (2013) Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature 495:65–69

    Article  CAS  PubMed  Google Scholar 

  • Carlone DL, Breault DT (2012) Tales from the crypt: the expanding role of slow cycling intestinal stem cells. Cell Stem Cell 10:2–4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen CL, Yu X, James IO, Zhang HY, Yang J, Radulescu A, Zhou Y, Besner GE (2012) Heparin-binding EGF-like growth factor protects intestinal stem cells from injury in a rat model of necrotizing enterocolitis. Lab Investig 92:331–344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clevers H, Bevins C (2013) Paneth cells: maestros of the small intestinal crypts. Annu Rev Physiol 75:289–311

    Article  CAS  PubMed  Google Scholar 

  • Dekaney CM, Gulati AS, Garrison AP, Helmrath MA, Henning SJ (2009) Regeneration of intestinal stem/progenitor cells following doxorubicin treatment of mice. Am J Physiol-Gastrointest Liver Physiol 297:G461–G470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fuller MK, Faulk DM, Sundaram N, Shroyer NF, Henning SJ, Helmrath MA (2012) Intestinal crypts reproducibly expand in culture. J Surg Res 178:48–54

    Article  PubMed Central  PubMed  Google Scholar 

  • Fuller MK, Faulk DM, Sundaram N, Mahe MM, Stout KM, Furstenberg RJ, Smith BJ, McNaughton KK, Shroyer NF, Helmrath MA, Henning SJ (2013) Intestinal stem cells remain viable after prolonged tissue storage. Cell Tissue Res 354:441–450

    Article  CAS  PubMed  Google Scholar 

  • Haramis AP, Begthel H, van den Born M, van Es J, Jonkheer S, Offerhaus GJ, Clevers H (2004) De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 303:1684–1686

    Article  CAS  PubMed  Google Scholar 

  • He XC, Zhang J, Tong WG, Tawfik O, Ross J, Scoville DH, Tian Q, Zeng X, He X, Wiedemann LM, Mishina Y, Li L (2004) BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat Genet 36:1117–1121

    Article  CAS  PubMed  Google Scholar 

  • Hitch MC, Leinicke JA, Wakeman D, Guo J, Erwin CR, Rowland KJ, Merrick EC, Heuckeroth RO, Warner BW (2012) Ret heterozygous mice have enhanced intestinal adaptation after massive small bowel resection. Am J Physiol-Gastrointest Liver Physiol 302:G1143–1150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hua G, Thin TH, Feldman R, Haimovitz-Friedman A, Clevers H, Fuks Z, Kolesnick R (2012) Crypt base columnar stem cells in small intestines of mice are radioresistant. Gastroenterology 143:1266–1276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ijiri K, Potten CS (1987) Further studies on the response of intestinal crypt cells of different hierarchical status to eighteen different cytotoxic agents. Br J Cancer 55:113–123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kabiri Z, Greicius G, Madan B, Biechele S, Zhong Z, Zaribafzadeh H, Edison, Aliyev J, Wu Y, Bunte R, Williams BO, Rossant J, Virshup DM (2014) Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts. Development (Camb) 141:2206–2215

    Article  CAS  Google Scholar 

  • King SL, Dekaney CM (2013) Small intestinal stem cells. Curr Opin Gastroenterol 29:140–145

    Article  CAS  PubMed  Google Scholar 

  • Kosinski C, Li VS, Chan AS, Zhang J, Ho C, Tsui WY, Chan TL, Mifflin RC, Powell DW, Yuen ST, Leung SY, Chen X (2007) Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors. Proc Natl Acad Sci U S A 104:15418–15423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leushacke M, Barker N (2014) Ex vivo culture of the intestinal epithelium: strategies and applications. Gut 63:1345–1354

    Article  CAS  PubMed  Google Scholar 

  • May R, Riehl TE, Hunt C, Sureban SM, Anant S, Houchen CW (2008) Identification of a novel putative gastrointestinal stem cell and adenoma stem cell marker, doublecortin and CaM kinase-like-1, following radiation injury and in adenomatous polyposis coli/multiple intestinal neoplasia mice. Stem Cells 26:630–637

    Article  PubMed  Google Scholar 

  • Metcalfe C, Kljavin N, Ybarra R, de Sauvage F (2014) Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration. Cell Stem Cell 14:1–11

    Article  Google Scholar 

  • Nakayama N, Han CY, Cam L, Lee JI, Pretorius J, Fisher S, Rosenfeld R, Scully S, Nishinakamura R, Duryea D, Van G, Bolon B, Yokota T, Zhang K (2004) A novel chordin-like BMP inhibitor, CHL2, expressed preferentially in chondrocytes of developing cartilage and osteoarthritic joint cartilage. Development (Camb) 131:229–240

    Article  CAS  Google Scholar 

  • Paralkar V, Weeks B, Yu Y, Kleinman H, Reddi A (1992) Recombinant human bone morphogenetic protein 2B stimulates PC12 cell differentiation: potentation and binding to type IV collagen. J Cell Biol 119:1721–1728

    Article  CAS  PubMed  Google Scholar 

  • Potten CS (2004) Radiation, the ideal cytotoxic agent for studying the cell biology of tissues such as the small intestine. Radiat Res 161:123–136

    Article  CAS  PubMed  Google Scholar 

  • Potten CS, Gandara R, Mahida YR, Loeffler M, Wright NA (2009) The stem cells of small intestinal crypts: where are they? Cell Prolif 42:731–750

    Article  CAS  PubMed  Google Scholar 

  • Powell DW, Pinchuk IV, Saada JI, Chen X, Mifflin RC (2011) Mesenchymal cells of the intestinal lamina propria. Annu Rev Physiol 73:213–237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Powell AE, Wang Y, Li Y, Poulin EJ, Means AL, Washington MK, Higginbotham JN, Juchheim A, Prasad N, Levy SE, Guo Y, Shyr Y, Aronow BJ, Haigis KM, Franklin JL, Coffey RJ (2012) The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell 149:146–158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roederer M (2001) Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats. Cytometry 45:194–205

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Clevers H (2013) Primary mouse small intestinal epithelial cell cultures. Methods Mol Biol 945:319–328

    Article  PubMed  Google Scholar 

  • Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265

    Article  CAS  PubMed  Google Scholar 

  • Scoville DH, Sato T, He XC, Li L (2008) Current view: intestinal stem cells and signaling. Gastroenterology 134:849–864

    Article  CAS  PubMed  Google Scholar 

  • Shaker A, Rubin DC (2010) Intestinal stem cells and epithelial-mesenchymal interactions in the crypt and stem cell niche. Transl Res 156:180–187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shao J, Sheng H (2010) Amphiregulin promotes intestinal epithelial regeneration: roles of intestinal subepithelial myofibroblasts. Endocrinology 151:3728–3737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith N, Davies P, Silk A, Wong M (2012) Epithelial and mesenchymal contribution to the niche: a safeguard for intestinal stem cell homeostasis. Gastroenterology 143:1426–1430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stelzner M, Helmrath M, Dunn JCY, Henning SJ, Houchen CW, Kuo C, Lynch J, Li L, Magness ST, Martin MG, Wong MH, Yu J (2012) A nomenclature for intestinal in vitro cultures. Am J Physiol-Gastrointest Liver Physiol 302:1359–1363

    Article  Google Scholar 

  • Tan D, Barker N (2014) Intestinal stem cells and their defining niche. Curr Top Dev Biol 107:77–107

    Article  CAS  PubMed  Google Scholar 

  • Totafurno J, Bjerknes M, Cheng H (1987) The crypt cycle. Crypt and villus production in the adult intestinal epithelium. Biophys J 52:279–294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Landeghem L, Santoro MA, Krebs AE, Mah AT, Dehmer JJ, Gracz AD, Scull BP, McNaughton K, Magness ST, Lund PK (2012) Activation of two distinct Sox9-EGFP-expressing intestinal stem cell populations during crypt regeneration after irradiation. Am J Physiol-Gastrointest Liver Physiol 302:1111–1132

    Article  Google Scholar 

  • von Furstenberg RJ, Gulati AS, Baxi A, Doherty JM, Stappenbeck TS, Gracz AD, Magness ST, Henning SJ (2011) Sorting mouse jejunal epithelial cells with CD24 yields a population with characteristics of intestinal stem cells. Am J Physiol-Gastrointest Liver Physiol 300:G409–G417

    Article  Google Scholar 

  • von Furstenberg RJ, Buczacki SJ, Smith BJ, Seiler KM, Winton DJ, Henning SJ (2013) Side population sorting separates subfractions of cycling and non-cycling intestinal stem cells. Stem Cell Res 12:364–375

    Article  Google Scholar 

  • Wong VWY, Stange DE, Page ME, Buczacki S, Wabik A, Itami S, van de Wetering M, Poulsom R, Wright NA, Trotter MWB, Watt FM, Winton DJ, Clevers H, Jensen KB (2012) Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nat Cell Biol 14:401–408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wright NA (2000) Epithelial stem cell repertoire in the gut: clues to the origin of cell lineages, proliferative units and cancer. Int J Exp Pathol 81:117–143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yan KS, Chia LA, Li X, Ootani A, Su J, Lee JY, Su N, Luo Y, Heilshorn SC, Amieva MR, Sangiorgi E, Capecchi MR, Kuo CJ (2012) The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc Natl Acad Sci U S A 109:466–471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ye Lei N, Jabaji Z, Wang J, Joshi V, Brinkley G, Khalil H, Wang F, Jaroszewicz A, Pellegrini M, Li L, Lewis M, Stelzner M, Dunn J, Martin M (2014) Intestinal subepithelial myofibroblasts support the growth of intestinal epithelial stem cells. PLoS ONE 9:e84651

    Article  Google Scholar 

  • Yu J (2013) Intestinal stem cell injury and protection during cancer therapy. Transl Cancer Res 2:384–396

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank: Ajay Gulati, MD, and Richard Moffitt, PhD, for their input toward experimental design of this project; Allison Rogala, DVM, for histologic assessment of inflammation in DXR-treated intestinal tissue; and Carlton W. Anderson and Scott T. Magness, PhD, of the Center for Gastrointestinal Biology and Disease’s Advanced Analytics Core for their valuable technical assistance with the Fluidigm qRT-PCR. We additionally acknowledge Joe Galanko, PhD, for statistical advice, Marcus Muehlbauer, MD PhD, for constructive input on the revised manuscript, Carolyn Suitt (UNC CGIBD Histology Core), Mike Vernon (UNC Functional Genomics Core) and valuable assistance from the UNC Flow Cytometry Core. This work was supported by the National Institutes of Health (NIH) Grants P30 DK034987, and U01-DK085547. The latter grant is part of the Intestinal Stem Cell Consortium, a collaborative research project funded by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) and the National Institute of Allergy and Infectious Diseases. Kristen Seiler was supported by the Medical Student Research Training Program (MSRTP) from the NIDDK funded as a supplement to NIH grant T32-DK007737. The UNC Flow Cytometry Core Facility is supported in part by NCI Center Core Support Grant (P30 CA016086) to the UNC Lineberger Comprehensive Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan J Henning.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 31 kb)

Supplemental Fig. 1

Representative images (×40) of H&E-stained jejunal sections from: a control mice and b mice 4 days post-DXR treatment. Crypts are outlined in white. In addition to effects on crypt morphology, there were obvious differences in the lamina propria. Control mice (a) show normal intracrypt cellularity, whereas DXR-treated mice (b) show reduced numbers of crypts and clear evidence of inflammatory infiltration. (GIF 156 kb)

High Resolution Image (TIFF 2760 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seiler, K.M., Schenhals, E.L., von Furstenberg, R.J. et al. Tissue underlying the intestinal epithelium elicits proliferation of intestinal stem cells following cytotoxic damage. Cell Tissue Res 361, 427–438 (2015). https://doi.org/10.1007/s00441-015-2111-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2111-1

Keywords

Navigation