Skip to main content

Advertisement

Log in

Visualization of structural organization of ventral membranes of sheared-open resorbing osteoclasts attached to apatite pellets

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Osteoclasts are highly polarized cells from both morphological and functional points of view. Using quick-freeze, rotary-replication methods combined with cell-shearing, we clarified the variability of cytoplasmic surface of the polarized membranes of osteoclasts seeded on apatite. As to the organization of actin filaments and clathrin sheets, we confirmed almost the same ventral membrane specializations of osteoclasts on apatite as seen on glass plates. The organized actin filaments and membrane-associated particles supported the ruffled border membranes. Inside the actin sealing zone, membrane specializations were not always occupied with the ruffled border but also with other types of membranes. Some osteoclasts formed an actin ring but lacked the ruffled border projections. We report a unique and distinctive membrane modification of apatite-attached osteoclasts, i.e., the presence of dense aggregates of membrane-associated particles and related structures not found in the osteoclasts seeded on glass plates. Actin filament polarity in the podosomes was determined by decoration with myosin S1. The actin filament polarity within podosome appears to be oriented predominantly with its barbed ends toward the core, whereas the interconnecting F-actin appears to be mixed oriented. Two different types of clathrin plaques displayed different distributions: clathrin-dependent endocytosis was observed in the ruffled border regions, whereas flat clathrin sheets were found in the leading edge of lamellipodia and near podosomes. The clathrin sheets adhered to the apatite surface tightly on the ventral membranes overlaying the resorption lacunae. All these membrane specializations as mentioned above may indicate the functional variability of osteoclasts seeded on apatite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aggele J, Werb Z (1982) Initial events during phagocytosis by macrophages view from outside and inside the cell membrane-particle interactions and clathrin. J Cell Biol 94:613–623

    Article  Google Scholar 

  • Aggeler J, Takemura R, Werb Z (1983) High-resolution three-dimensional views of membrane-associated clathrin and cytoskeleton in critical-point-dried macrophages. J Cell Biol 97:1452–1458

    Article  CAS  PubMed  Google Scholar 

  • Akisaka T, Miyaji T, Yoshida H, Inoue M (1997) Ultrastructure of quick-frozen and freeze-substituted chick osteoclasts. J Anat 190:433–445

  • Akisaka T, Yoshida H, Inoue S, Shimizu K (2001) Organization of cytoskeletal F-actin, G-actin, and gelsolin in the adhesion structures in cultured osteoclasts. J Bone Miner Res 16:1248–1255

    Article  CAS  PubMed  Google Scholar 

  • Akisaka T, Yoshida H, Suzuki R, Shimizu K, Takama K (2003) Clathrin sheets on the protoplasmic surface of ventral membrane of osteoclasts in culture. J Electron Microsc 52:535–543

    Article  CAS  Google Scholar 

  • Akisaka T, Yoshida H, Suzuki R (2006) The ruffled border and attachment region of the apposing membrane of resorbing osteoclasts as visualized from the cytoplasmic face of the membrane. J Electron Microsc 55:53–61

    Article  CAS  Google Scholar 

  • Akisaka T, Yoshida H, Suzuki R, Takama K (2008) Adhesion structures and their cytoskeleton-membrane interactions at podosomes of osteoclasts in culture. Cell Tissue Res 331:625–641

    Article  PubMed  Google Scholar 

  • Akisaka T, Yoshida H, Takigawa T (2011) Differential distribution of posttranslationally modified microtubules in osteoclasts. J Histochem Cytochem 59:630–638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Babb SG, Matsudaira P, Sato M, Correia I, Lim SS (1997) Fimbrin in podosomes of monocyte-derived osteoclasts. Cell Motil Cytoskeleton 37:308–325

    Article  CAS  PubMed  Google Scholar 

  • Badowski C, Pawlak G, Grichine A, Chabadel A, Oddou C, Jurdic P, Pfaff M, Albiges-Rizo C, Block MR (2008) Paxillin phosphorylation controls invadopodia/podosomes spatiotemporal organization. Mol Biol Cell 19:633–645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Batchelder EM, Yarar D (2010) Differential requirements for clathrin-dependent endocytosis at sites of cell-substrate adhesion. Mol Biol Cell 21:3070–3079

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Block MR, Badowski C, Millon-Fremillon A, Bouvard D, Bouin A-P, Faurobert E, Gerber-Scokaert D, Planus E, Albiges-Rizo C (2008) Podosomes-type adhesions and focal adhesions, so alike yet so different. Eur J Cell Biol 87:491–506

    Article  CAS  PubMed  Google Scholar 

  • Chabadel A, Banon-Rodriguez I, Cluet D, Rudkin BB, Wehrle-Haller B, Genot E, Jurdic P, Anton IM, Saltel F (2007) CD44 and β3 integrin organize two functionally distinct actin-based domains in osteoclasts. Mol Biol Cell 18:4899–4910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chao W-T, Kunz J (2009) Focal adhesion disassembly requires clathrin-dependent endocytosis of integrin. FEBS Lett 583:1337–1343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Collins A, Warrington A, Taylor KA, Svitkina T (2011) Structural organization of the actin cytoskeleton at sites of clathrin-mediated endocytosis. Curr Biol 21:1157–1175

    Article  Google Scholar 

  • De Deyne PG, O’Neill A, Resneck WG, Dmytrenko GM, Pumplin DW, Bloch RJ (1998) The vitronectin receptor associates with clathrin-coated membrane domains via the cytoplasmic domain of its β5 subunit. J Cell Sci 111:2729–2740

    PubMed  Google Scholar 

  • Destaing O, Saltel F, Ceminard JC, Jurdic P, Bard F (2003) Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein. Mol Biol Cell 14:407–416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Evans JG, Correia I, Krasavina O, Watson N, Matsudaira P (2003) Macrophage podosomes assemble at the leading lamella by growth and fragmentation. J Cell Biol 161:697–706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gavazzi I, Nermut MV, Marchisio PC (1989) Ultrastructure and gold-immunolabelling of cell-substratum adhesions (podosomes) in RSV-transformed BHK cells. J Cell Sci 94:85–99

  • Geblinger D, Geiger B, Addadi L (2009) Surface-induced regulation of podosome organization and dynamics in cultured osteoclasts. Chembiochem 10:158–165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heuser JE, Cooke R (1983) Actin-myosin interactions visualized by the quick-freeze, deep-etch replica technique. Mol Biol 160:97–122

    Article  Google Scholar 

  • Jurdic P, Saltel F, Chabadel A, Destaing O (2006) Podosome and sealing zone: specificity of the osteoclast model. Eur J Cell Biol 85:195–202

    Article  CAS  PubMed  Google Scholar 

  • Lakkakorpi PT, Väänänen HK (1991) Kinetics of the osteoclast cytoskeleton during the resorption cycle in vitro. J Bone Miner Res 6:817–826

    Article  CAS  PubMed  Google Scholar 

  • Lakkakorpi PT, Väänänen HK (1996) Cytoskeletal changes in osteoclasts during the resorption cycle. Microsc Res Tech 33:171–181

    Article  CAS  PubMed  Google Scholar 

  • Larkin JM, Donzell WC, Anderson RGW (1986) Potassium-dependent assembly of coated pits: new coated pits form as planar clathrin lattices. J Cell Biol 103:2619–2627

    Article  CAS  PubMed  Google Scholar 

  • Lewis AK, Bridgman PC (1992) Nerve growth cone lamellipodia contain two populations of actin filaments that differ in organization and polarity. J Cell Biol 119:1219–1243

    Article  CAS  PubMed  Google Scholar 

  • Linder S, Aepfelbacher M (2003) Podosomes: adhesion hot-spots of invasive cells. Trends Cell Biol 13:376–385

    Article  CAS  PubMed  Google Scholar 

  • Linder S, Hüfner K, Wintergerst U, Aepfelbacher M (2000) Microtubule-dependent formation of podosomal adhesion structures in primary human macrophages. J Cell Sci 113:4165–4176

    CAS  PubMed  Google Scholar 

  • Luxenburg C, Addadi L, Geiger B (2006) The molecular dynamics of osteoclast adhesion. Eur J Cell Biol 85:203–211

    Article  CAS  PubMed  Google Scholar 

  • Luxenburg C, Geblinger D, Klein E, Anderson K, Hanein D, Geiger B, Addadi L (2007) The architecture of the adhesive apparatus of cultured osteoclasts: from podosome formation to sealing zone assembly. PLoS ONE 2:e179

    Article  PubMed Central  PubMed  Google Scholar 

  • Marchisio PC, Cirillo D, Naldini L, Primavera MV, Teti A, Zambonin-Zallone A (1984) Cell-substratum interaction of cultured avian osteoclasts is mediated by specific adhesion structures.J Cell Biol99:1696–705

  • Maupin P, Pollard TD (1983) Improved preservation and staining of HeLa cell actin filaments, clathrin-coated membranes, and other cytoplasmic structures by tannic acid-glutaraldehyde-saponin fixation. J Cell Biol 96:51–62

    Article  CAS  PubMed  Google Scholar 

  • Mulari MT, Zhao H, Lakkakorpi PT, Väänänen HK (2003) Osteoclast ruffled border has distinct subdomains for secretion and degraded matrix uptake. Traffic 4:113–125

    Article  CAS  PubMed  Google Scholar 

  • Nermut MV, Williams LD, Stamatoglou SC (1986) Ultrastructure of ventral membranes of rat hepatocytes spread on type IV collagen. Eur J Cell Biol 42:35–44

    CAS  PubMed  Google Scholar 

  • Nermut MV, Eason P, Hirst EMA, Kellie S (1991) Cell/substratum adhesions in RSV-transformed rat fibroblasts. Exp Cell Res 193:382–397

    Article  CAS  PubMed  Google Scholar 

  • Nicol A, Nermut MV (1987) A new type of substratum adhesion structure in NRK cells revealed by correlated interference reflection and electron microscopy. Eur J Cell Biol 43:348–357

    CAS  PubMed  Google Scholar 

  • Ono M, Murakami T, Tomita M, Ishikawa H (1993) Association of the actin cytoskeleton with glass-adherent proteins in mouse peritoneal macrophages. Biol Cell 77:219–230

    Article  CAS  PubMed  Google Scholar 

  • Palokangas H, Mulari MT, Väänänen HK (1997) Endocytic pathway from the basal plasma membranes to the ruffled border membrane in bone-resorbing osteoclast. J Cell Sci 110:1767–1780

    CAS  PubMed  Google Scholar 

  • Pierce A, Lindskog S (1988) Coated pits and vesicles in the osteoclasts. J Submicrosc Cytol Pathol 20:161–167

    CAS  PubMed  Google Scholar 

  • Pumplin DW (1989) Acetylcholine receptor clusters of rat myotubes have at least three domains with distinctive cytoskeletal and membranous components. J Cell Biol 109:739–753

    Article  CAS  PubMed  Google Scholar 

  • Pumplin DW, Bloch RJ (1990) Clathrin-coated membrane: a distinct membrane domain in acetylcholine receptor clusters of rat myotubes. Cell Motil Cytoskeleton 15:123–134

    Article  Google Scholar 

  • Saffarian S, Cocucci E, Kirchhausen T (2009) Distinct dynamics of endocytic clathrin-coated pits and coated plaques. PLoS One 7:e1000191

    Article  Google Scholar 

  • Saltel F, Destaing O, Bard F, Eichert D, Jurdic P (2004) Apatite-mediated actin dynamics in resorbing osteoclasts. Mol Biol Cell 15:5231–5241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saltel F, Chabadel A, Bonnelye E, Jurdic P (2008) Actin cytoskeletal organization in osteoclasts: a model to decipher transmigration and matrix degradation. Eur J Cell Biol 87:459–468

    Article  CAS  PubMed  Google Scholar 

  • Samuelsson SJ, Luther PW, Pumplin DW, Bloch RJ (1993) Structures linking microfilament bundles to the membrane at focal contacts. J Cell Biol 122:485–496

    Article  CAS  PubMed  Google Scholar 

  • Stenbeck G, Horton MA (2000) A new specialized cell-matrix interaction in actively resorbing osteoclasts. J Cell Sci 113:1577–1587

    CAS  PubMed  Google Scholar 

  • Stenbeck G, Horton MA (2003) Endocytic trafficking in actively resorbing osteoclasts. J Cell Sci 117:827–836

    Article  Google Scholar 

  • Svitkina TM, Verkhovsky AB (1995) Improved procedures for electron microscopic visualization of the cytoskeleton of cultured cells. J Struct Biol 115:290–303

    Article  CAS  PubMed  Google Scholar 

  • Svitkina TM, Verkhovsky AB, McQuade KM, Borisy GG (1997) Analysis of the actin-myosin II system in fish epidermal keratocytes: mechanism of cell body translocation. J Cell Biol 139:397–415

  • Szewczyk KA, Fuller K, Chambers TJ (2013) Distinctive subdomains in the resorbing surface of osteoclasts. PLoS ONE 8:e60285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Traub LM (2009) Clathrin couture: fashioning distinctive membrane coats at the cell surface. PLoS ONE 7:e1000192

    Article  Google Scholar 

  • Traub LM (2011) Regarding the amazing choreography of clathrin coats. PLoS ONE 9:e1001037

    Article  CAS  Google Scholar 

  • Verschueren H (1985) Interference reflection microscopy in cell biology:methodology and applications. J Cell Sci 75:279–301

  • Verkhovsky AB, Svitkina TM, Borisy GG (1997) Polarity sorting of actin filaments in cytochalasin-treated fibroblast. J Cell Sci 110:1693–1704

    CAS  PubMed  Google Scholar 

  • Zambonin-Zallone A, Teti A, Carano A, Marchisio PC (1988) The distribution of podosomes in osteoclasts cultured bone lamina: effect of retinol. J Bone Miner Res 3:517–523

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshitaka Akisaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akisaka, T., Yoshida, A. Visualization of structural organization of ventral membranes of sheared-open resorbing osteoclasts attached to apatite pellets. Cell Tissue Res 360, 347–362 (2015). https://doi.org/10.1007/s00441-014-2085-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-2085-4

Keywords

Navigation