Skip to main content
Log in

Epigenetic regulation of Tbx18 gene expression during endochondral bone formation

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Endochondral bone formation is tightly regulated by the spatial and sequential expression of a series of transcription factors. To disclose the roles of TBX18, a member of the T-box transcription factor family, during endochondral bone formation, its spatial and temporal expression patterns were characterized in the limb skeletal region of the developing mouse together with those of established osteochondrogenic markers Sox9, Col2a1, and Runx2. TBX18 expression first appeared in condensed mesenchymal cells (chondro-progenitors) in embryonic-day-10.5 (E10.5) limb bud and was co-localized with Sox9 expression, whereas at E11.5 and E12.5, it became undetectable in mesenchymal cells committed to the chondrocyte lineage. From E13.5 to E18.5, TBX18 expression reappeared in chondrocytes, correlating strongly with Col2a1 expression; furthermore, low level TBX18 expression was found in the Runx2-positive perichondral osteoblastic cell lineage. At the postnatal stage, TBX18 expression was observed in epiphyseal chondrocytes and osteocytes within the lacunae of mature trabecular bone. On the assumption that such characteristic Tbx18 gene expression is epigenetically regulated during mouse limb development, we examined the methylation status of the CpG-island in the mouse Tbx18 gene by methylation-specific polymerase chain reaction. Hypermethylation of the Tbx18 gene promoter became evident at an early embryonic stage in TBX18-negative cells and then disappeared at a late embryonic stage in TBX18-positive cells. Therefore, the temporal suppression of Tbx18 gene expression by the hypermethylation of its promoter seems to trigger the differentiation of mesenchymal cells into hypertrophic chondrocytes in the early stages of endochondral ossification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Airik R, Trowe MO, Foik A, Farin HF, Petry M, Schuster-Gossler K, Schweizer M, Scherer G, Kist R, Kispert A (2010) Hydroureternephrosis due to loss of Sox9-regulated smooth muscle cell differentiation of the ureteric mesenchyme. Hum Mol Genet 19:4918–4929

    Article  CAS  PubMed  Google Scholar 

  • Akiyama H, Chaboissier MC, Martin JF, Schedl A, Crombrugghe B de (2002) The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 16:2813–2828

  • Akiyama H, Kim JE, Nakashima K, Balmes G, Iwai N, Deng JM, Zhang Z, Martin JF, Behringer RR, Nakamura T, Crombrugghe B de (2005) Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors. Proc Natl Acad Sci U S A 102:14665–14670

  • Bell DM, Leung KK, Wheatley SC, Ng LJ, Zhou S, Ling KW, Sham MH, Koopman P, Tam PP, Cheah KS (1997) SOX9 directly regulates the type-II collagen gene. Nat Genet 16:174–178

    Article  CAS  PubMed  Google Scholar 

  • Bridgewater LC, Lefebvre V, Crombrugghe B de (1998) Chondrocyte-specific enhancer elements in the Col11a2 gene resemble the Col2a1 tissue-specific enhancer. J Biol Chem 273:14998–15006

  • Brummelkamp TR, Kortlever RM, Lingbeek M, Trettel F, MacDonald ME, van Lohuizen M, Bernards R (2002) TBX-3, the gene mutated in Ulnar-Mammary syndrome, is a negative regulator of p19ARF and inhibits senescence. J Biol Chem 277:6567–6572

    Article  CAS  PubMed  Google Scholar 

  • Bussen M, Petry M, Schuster-Gossler K, Leitges M, Gossler A, Kispert A (2004) The T-box transcription factor Tbx18 maintains the separation of anterior and posterior somite compartments. Genes Dev 18:1209–1221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cai CL, Martin JC, Sun Y, Cui L, Wang L, Ouyang K, Yang L, Bu L, Liang X, Zhang X, Stallcup WB, Denton CP, McCulloch A, Chen J, Evans SM (2008) A myocardial lineage derives from Tbx18 epicardial cells. Nature 454:104–108

    Article  CAS  PubMed  Google Scholar 

  • Cheung JO, Hillarby MC, Ayad S, Hoyland JA, Jones CJ, Denton J, Thomas JT, Wallis GA, Grant ME (2001) A novel cell culture model of chondrocyte differentiation during mammalian endochondral ossification. J Bone Miner Res 16:309–318

    Article  CAS  PubMed  Google Scholar 

  • Christoffels VM, Grieskamp T, Norden J, Mommersteeg MT, Rudat C, Kispert A (2009) Tbx18 and the fate of epicardial progenitors. Nature 458:E8–E9

  • Clavel C, Grisanti L, Zemla R, Rezza A, Barros R, Sennett R, Mazloom AR, Chung CY, Cai X, Cai CL, Pevny L, Nicolis S, Máayan A, Rendl M (2012) Sox2 in the dermal papilla niche controls hair growth by fine-tuning BMP signaling in differentiating hair shaft progenitors. Dev Cell 23:981–994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Darwanto A, Kitazawa R, Mori K, Kondo T, Kitazawa S (2008) MeCP2 expression and promoter methylation of cyclin D1 gene are associated with cyclin D1 expression in developing rat epididymal duct. Acta Histochem Cytochem 41:135–142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dias RR, Albuquerque JM, Pereira AC, Stolf NA, Krieger JE, Mady C, Oliveira SA (2007) Holt-Oram syndrome presenting as agenesis of the left pericardium. Int J Cardiol 114:98–100

    Article  PubMed  Google Scholar 

  • Erlebacher A, Filvaroff EH, Gitelman SE, Derynck R (1995) Toward a molecular understanding of skeletal development. Cell 80:371–378

    Article  CAS  PubMed  Google Scholar 

  • Farin HF, Bussen M, Schmidt MK, Singh MK, Schuster-Gossler K, Kispert A (2007) Transcriptional repression by the T-box proteins Tbx18 and Tbx15 depends on Groucho corepressors. J Biol Chem 282:25748–25759

    Article  CAS  PubMed  Google Scholar 

  • Farin HF, Mansouri A, Petry M, Kispert A (2008) T-box protein Tbx18 interacts with the paired box protein Pax3 in the development of the paraxial mesoderm. J Biol Chem 283:25372–25380

    Article  CAS  PubMed  Google Scholar 

  • Ghoshal K, Motiwala T, Claus R, Yan P, Kutay H, Datta J, Majumder S, Bai S, Majumder A, Huang T, Plass C, Jacob ST (2010) HOXB13, a target of DNMT3B, is methylated at an upstream CpG island, and functions as a tumor suppressor in primary colorectal tumors. PLoS One 5:e10338

    Article  PubMed Central  PubMed  Google Scholar 

  • Haraguchi R, Matsumaru D, Nakagata N, Miyagawa S, Suzuki K, Kitazawa S, Yamada G (2012) The hedgehog signal induced modulation of bone morphogenetic protein signaling: an essential signaling relay for urinary tract morphogenesis. PLoS One 7:e42245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hojo H, Ohba S, Yano F, Saito T, Ikeda T, Nakajima K, Komiyama Y, Nakagata N, Suzuki K, Takato T, Kawaguchi H, Chung UI (2012) Gli1 protein participates in Hedgehog-mediated specification of osteoblast lineage during endochondral ossification. J Biol Chem 287:17860–17869

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson RL, Tabin CJ (1997) Molecular models for vertebrate limb development. Cell 90:979–990

    Article  CAS  PubMed  Google Scholar 

  • Kapoor N, Galang G, Marban E, Cho HC (2011) Transcriptional suppression of connexin43 by TBX18 undermines cell-cell electrical coupling in postnatal cardiomyocytes. J Biol Chem 286:14073–14079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karsenty G, Wagner EF (2002) Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2:389–406

    Article  CAS  PubMed  Google Scholar 

  • Kitazawa R, Kitazawa S (2007) Methylation status of a single CpG locus 3 bases upstream of TATA-box of receptor activator of nuclear factor-kappaB ligand (RANKL) gene promoter modulates cell- and tissue-specific RANKL expression and osteoclastogenesis. Mol Endocrinol 21:148–158

    Article  CAS  PubMed  Google Scholar 

  • Kraus F, Haenig B, Kispert A (2001) Cloning and expression analysis of the mouse T-box gene Tbx18. Mech Dev 100:83–86

    Article  CAS  PubMed  Google Scholar 

  • Kronenberg HM (2003) Developmental regulation of the growth plate. Nature 423:332–336

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre V, Huang W, Harley VR, Goodfellow PN, Crombrugghe B de (1997) SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol Cell Biol 17:2336–2346

  • Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926

    Article  CAS  PubMed  Google Scholar 

  • Naiche LA, Harrelson Z, Kelly RG, Papaioannou VE (2005) T-box genes in vertebrate development. Annu Rev Genet 39:219–239

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa M, Kitazawa R, Kuwahara N, Yoshida K, Haraguchi R, Kitazawa S (2013) Efficient genetic analysis of microdissected samples by agarose-bead method: alterations of beta-catenin gene in fundic gland polyp and heterotopic gastric mucosa of duodenum. Acta Histochem Cytochem 46:19–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ng LJ, Wheatley S, Muscat GE, Conway-Campbell J, Bowles J, Wright E, Bell DM, Tam PP, Cheah KS, Koopman P (1997) SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Dev Biol 183:108–121

    Article  CAS  PubMed  Google Scholar 

  • Nilsson O, Mitchum RD Jr, Schrier L, Ferns SP, Barnes KM, Troendle JF, Baron J (2005) Growth plate senescence is associated with loss of DNA methylation. J Endocrinol 186:241–249

    Article  CAS  PubMed  Google Scholar 

  • Nishino K, Hattori N, Tanaka S, Shiota K (2004) DNA methylation-mediated control of Sry gene expression in mouse gonadal development. J Biol Chem 279:22306–22313

    Article  CAS  PubMed  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  CAS  PubMed  Google Scholar 

  • Olsen BR, Reginato AM, Wang W (2000) Bone development. Annu Rev Cell Dev Biol 16:191–220

    Article  CAS  PubMed  Google Scholar 

  • Schmahl W, Torok P, Kriegel H (1984) Embryotoxicity of 5-azacytidine in mice. Phase- and dose-specificity studies. Arch Toxicol 55:143–147

    Article  CAS  PubMed  Google Scholar 

  • Soeda T, Deng JM, Crombrugghe B de, Behringer RR, Nakamura T, Akiyama H (2010) Sox9-expressing precursors are the cellular origin of the cruciate ligament of the knee joint and the limb tendons. Genesis 48:635–644

  • Song MR, Shirasaki R, Cai CL, Ruiz EC, Evans SM, Lee SK, Pfaff SL (2006) T-box transcription factor Tbx20 regulates a genetic program for cranial motor neuron cell body migration. Development 133:4945–4955

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto Y, Takimoto A, Akiyama H, Kist R, Scherer G, Nakamura T, Hiraki Y, Shukunami C (2013) Scx+/Sox9+ progenitors contribute to the establishment of the junction between cartilage and tendon/ligament. Development 140:2280–2288

    Article  CAS  PubMed  Google Scholar 

  • Takeichi M, Nimura K, Mori M, Nakagami H, Kaneda Y (2013) The transcription factors Tbx18 and Wt1 control the epicardial epithelial-mesenchymal transition through bi-directional regulation of Slug in murine primary epicardial cells. PLoS One 8:e57829

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takizawa T, Nakashima K, Namihira M, Ochiai W, Uemura A, Yanagisawa M, Fujita N, Nakao M, Taga T (2001) DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev Cell 1:749–758

    Article  CAS  PubMed  Google Scholar 

  • Trowe MO, Shah S, Petry M, Airik R, Schuster-Gossler K, Kist R, Kispert A (2010) Loss of Sox9 in the periotic mesenchyme affects mesenchymal expansion and differentiation, and epithelial morphogenesis during cochlea development in the mouse. Dev Biol 342:51–62

    Article  CAS  PubMed  Google Scholar 

  • Vlahovic M, Bulic-Jakus F, Juric-Lekic G, Fucic A, Maric S, Serman D (1999) Changes in the placenta and in the rat embryo caused by the demethylating agent 5-azacytidine. Int J Dev Biol 43:843–846

    CAS  PubMed  Google Scholar 

  • Walsh CP, Bestor TH (1999) Cytosine methylation and mammalian development. Genes Dev 13:26–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Tripathi P, Guo Q, Coussens M, Ma L, Chen F (2009) Cre/lox recombination in the lower urinary tract. Genesis 47:409–413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiao Z, Zhang S, Mahlios J, Zhou G, Magenheimer BS, Guo D, Dallas SL, Maser R, Calvet JP, Bonewald L, Quarles LD (2006) Cilia-like structures and polycystin-1 in osteoblasts/osteocytes and associated abnormalities in skeletogenesis and Runx2 expression. J Biol Chem 281:30884–30895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yokonishi T, Sato T, Katagiri K, Komeya M, Kubota Y, Ogawa T (2013) In vitro reconstruction of mouse seminiferous tubules supporting germ cell differentiation. Biol Reprod (in press)

  • Zeng B, Ren XF, Cao F, Zhou XY, Zhang J (2011) Developmental patterns and characteristics of epicardial cell markers Tbx18 and Wt1 in murine embryonic heart. J Biomed Sci 18:67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao Q, Eberspaecher H, Lefebvre V, Crombrugghe B de (1997) Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis. Dev Dyn 209:377–386

  • Zhou G, Zheng Q, Engin F, Munivez E, Chen Y, Sebald E, Krakow D, Lee B (2006) Dominance of SOX9 function over RUNX2 during skeletogenesis. Proc Natl Acad Sci U S A 103:19004–19009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We express our appreciation to Ms. Yuki Takaoka and Ms. Chie Arimatsu for their valuable assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohei Kitazawa.

Additional information

This work was supported by a Grant-in-Aid for Young Scientists B (23790228 and 25860143) and by the Tenure-Track System at Ehime University.

The experiments were concieved and designed by R.H., R.K., and S.K. and performed by R.H. The reagents/materials/analysis tools were contributed by R.H., R.K., and S.K. The data were analyzed by R.H. and S.K. The paper was written by R.H. and S.K.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PPTX 16222 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haraguchi, R., Kitazawa, R. & Kitazawa, S. Epigenetic regulation of Tbx18 gene expression during endochondral bone formation. Cell Tissue Res 359, 503–512 (2015). https://doi.org/10.1007/s00441-014-2028-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-2028-0

Keywords

Navigation