Skip to main content

Advertisement

Log in

Mechanisms linking connexin mutations to human diseases

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Ubiquitously expressed connexins are tetra-spanning transmembrane proteins that form intercellular gap junction channels or cell surface hemichannels. Connexins share similar topology but no sequence homology with mammalian pannexins and CALHM1 (calcium homeostasis modulator 1), which are also large-pore transmembrane channels. Of these three channel types, clinical evidence and gene sequence analysis to date have revealed that inherited human diseases are only associated with mutations in the connexin gene family. Connexin-linked diseases often present at birth or early in life and range from mild developmental abnormalities to severe organ failure such as hearing loss. Inherited connexin gene mutations can manifest as a disease by causing anomalies or defects in connexin oligomerization, folding, ability to pass quality control mechanisms or unexpected gain- or loss-of-function. This review provides examples of the way that various connexin gene mutations can cause disease via a wide range of molecular mechanisms. We also reflect on exciting strategies being explored in the connexin field and beyond with a view of translating their findings into potential connexin-disease therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe S, Usami S, Shinkawa H, Kelley PM, Kimberling WJ (2000) Prevalent connexin 26 gene (GJB2) mutations in Japanese. J Med Genet 37:41–43

    PubMed Central  CAS  PubMed  Google Scholar 

  • Abrams CK, Bennett MV, Verselis VK, Bargiello TA (2002) Voltage opens unopposed gap junction hemichannels formed by a connexin 32 mutant associated with X-linked Charcot-Marie-Tooth disease. Proc Natl Acad Sci U S A 99:3980–3984

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ahmad S, Tang W, Chang Q, Qu Y, Hibshman J, Li Y, Sohl G, Willecke K, Chen P, Lin X (2007) Restoration of connexin26 protein level in the cochlea completely rescues hearing in a mouse model of human connexin30-linked deafness. Proc Natl Acad Sci U S A 104:1337–1341

    PubMed Central  CAS  PubMed  Google Scholar 

  • Aiuti A, Biasco L, Scaramuzza S, Ferrua F, Cicalese MP, Baricordi C, Dionisio F, Calabria A, Giannelli S, Castiello MC, Bosticardo M, Evangelio C, Assanelli A, Casiraghi M, Di Nunzio S, Callegaro L, Benati C, Rizzardi P, Pellin D, Di Serio C, Schmidt M, Von Kalle C, Gardner J, Mehta N, Neduva V, Dow DJ, Galy A, Miniero R, Finocchi A, Metin A, Banerjee PP, Orange JS, Galimberti S, Valsecchi MG, Biffi A, Montini E, Villa A, Ciceri F, Roncarolo MG, Naldini L (2013) Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science 341:1233151

    PubMed Central  PubMed  Google Scholar 

  • Akiyama M, Ishida N, Ogawa T, Yogo K, Takeya T (2005) Molecular cloning and functional analysis of a novel Cx43 partner protein CIP150. Biochem Biophys Res Commun 335:1264–1271

    CAS  PubMed  Google Scholar 

  • Alapure BV, Stull JK, Firtina Z, Duncan MK (2012) The unfolded protein response is activated in connexin 50 mutant mouse lenses. Exp Eye Res 102:28–37

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ammerpohl O, Trauzold A, Schniewind B, Griep U, Pilarsky C, Grutzmann R, Saeger HD, Janssen O, Sipos B, Kloppel G, Kalthoff H (2007) Complementary effects of HDAC inhibitor 4-PB on gap junction communication and cellular export mechanisms support restoration of chemosensitivity of PDAC cells. Br J Cancer 96:73–81

    PubMed Central  CAS  PubMed  Google Scholar 

  • Anselmi F, Hernandez VH, Crispino G, Seydel A, Ortolano S, Roper SD, Kessaris N, Richardson W, Rickheit G, Filippov MA, Monyer H, Mammano F (2008) ATP release through connexin hemichannels and gap junction transfer of second messengers propagate Ca2+ signals across the inner ear. Proc Natl Acad Sci U S A 105:18770–18775

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arora A, Minogue PJ, Liu X, Reddy MA, Ainsworth JR, Bhattacharya SS, Webster AR, Hunt DM, Ebihara L, Moore AT, Beyer EC, Berthoud VM (2006) A novel GJA8 mutation is associated with autosomal dominant lamellar pulverulent cataract: further evidence for gap junction dysfunction in human cataract. J Med Genet 43:e2

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arora A, Minogue PJ, Liu X, Addison PK, Russel-Eggitt I, Webster AR, Hunt DM, Ebihara L, Beyer EC, Berthoud VM, Moore AT (2008) A novel connexin50 mutation associated with congenital nuclear pulverulent cataracts. J Med Genet 45:155–160

    PubMed Central  CAS  PubMed  Google Scholar 

  • Asklund T, Appelskog IB, Ammerpohl O, Ekstrom TJ, Almqvist PM (2004) Histone deacetylase inhibitor 4-phenylbutyrate modulates glial fibrillary acidic protein and connexin 43 expression, and enhances gap-junction communication, in human glioblastoma cells. Eur J Cancer 40:1073–1081

    CAS  PubMed  Google Scholar 

  • Auth T, Schluter S, Urschel S, Kussmann P, Sonntag S, Hoher T, Kreuzberg MM, Dobrowolski R, Willecke K (2009) The TSG101 protein binds to connexins and is involved in connexin degradation. Exp Cell Res 315:1053–1062

    CAS  PubMed  Google Scholar 

  • Bai D (2014) Atrial fibrillation-linked GJA5/connexin40 mutants impaired gap junctions via different mechanisms. FEBS Lett 588:1238–1243

    CAS  PubMed  Google Scholar 

  • Bao X, Chen Y, Reuss L, Altenberg GA (2004) Functional expression in xenopus oocytes of gap-junctional hemichannels formed by a cysteine-less connexin 43. J Biol Chem 279:9689–9692

    CAS  PubMed  Google Scholar 

  • Baranova A, Ivanov D, Petrash N, Pestova A, Skoblov M, Kelmanson I, Shagin D, Nazarenko S, Geraymovych E, Litvin O, Tiunova A, Born TL, Usman N, Staroverov D, Lukyanov S, Panchin Y (2004) The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins. Genomics 83:706–716

    CAS  PubMed  Google Scholar 

  • Bejarano E, Girao H, Yuste A, Patel B, Marques C, Spray DC, Pereira P, Cuervo AM (2012) Autophagy modulates dynamics of connexins at the plasma membrane in a ubiquitin-dependent manner. Mol Biol Cell 23:2156–2169

    PubMed Central  CAS  PubMed  Google Scholar 

  • Beltramello M, Piazza V, Bukauskas FF, Pozzan T, Mammano F (2005) Impaired permeability to Ins(1,4,5)P3 in a mutant connexin underlies recessive hereditary deafness. Nat Cell Biol 7:63–69

    CAS  PubMed  Google Scholar 

  • Berger AC, Kelly JJ, Lajoie P, Shao Q, Laird DW (2014) Mutations in Cx30 that are linked to skin disease and non-syndromic hearing loss exhibit several distinct cellular pathologies. J Cell Sci 127:1751–1764

    CAS  PubMed  Google Scholar 

  • Bergoffen J, Scherer SS, Wang S, Scott MO, Bone LJ, Paul DL, Chen K, Lensch MW, Chance PF, Fischbeck KH (1993) Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science 262:2039–2042

    CAS  PubMed  Google Scholar 

  • Berthoud VM, Minogue PJ, Guo J, Williamson EK, Xu X, Ebihara L, Beyer EC (2003) Loss of function and impaired degradation of a cataract-associated mutant connexin50. Eur J Cell Biol 82:209–221

    PubMed Central  CAS  PubMed  Google Scholar 

  • Berthoud VM, Minogue PJ, Yu H, Schroeder R, Snabb JI, Beyer EC (2013) Connexin50D47A decreases levels of fiber cell connexins and impairs lens fiber cell differentiation. Invest Ophthalmol Vis Sci 54:7614–7622

    PubMed Central  CAS  PubMed  Google Scholar 

  • Beyer EC, Ebihara L, Berthoud VM (2013) Connexin mutants and cataracts. Front Pharmacol 4:43

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bhalla-Gehi R, Penuela S, Churko JM, Shao Q, Laird DW (2010) Pannexin1 and pannexin3 delivery, cell surface dynamics, and cytoskeletal interactions. J Biol Chem 285:9147–9160

    PubMed Central  CAS  PubMed  Google Scholar 

  • Biancheri R, Rosano C, Denegri L, Lamantea E, Pinto F, Lanza F, Severino M, Filocamo M (2013) Expanded spectrum of Pelizaeus-Merzbacher-like disease: literature revision and description of a novel GJC2 mutation in an unusually severe form. Eur J Hum Genet 21:34–39

    PubMed Central  CAS  PubMed  Google Scholar 

  • Biffi A, Montini E, Lorioli L, Cesani M, Fumagalli F, Plati T, Baldoli C, Martino S, Calabria A, Canale S, Benedicenti F, Vallanti G, Biasco L, Leo S, Kabbara N, Zanetti G, Rizzo WB, Mehta NA, Cicalese MP, Casiraghi M, Boelens JJ, Del Carro U, Dow DJ, Schmidt M, Assanelli A, Neduva V, Di Serio C, Stupka E, Gardner J, Von Kalle C, Bordignon C, Ciceri F, Rovelli A, Roncarolo MG, Aiuti A, Sessa M, Naldini L (2013) Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 341:1233158

    PubMed  Google Scholar 

  • Bikou O, Thomas D, Trappe K, Lugenbiel P, Kelemen K, Koch M, Soucek R, Voss F, Becker R, Katus HA, Bauer A (2011) Connexin 43 gene therapy prevents persistent atrial fibrillation in a porcine model. Cardiovasc Res 92:218–225

    CAS  PubMed  Google Scholar 

  • Birkenhager R, Prera N, Aschendorff A, Laszig R, Arndt S (2014) A novel homozygous mutation in the EC1/EC2 interaction domain of the gap junction complex connexon 26 leads to profound hearing impairment. Biomed Res Int 2014:307976

    PubMed Central  PubMed  Google Scholar 

  • Bitner-Glindzicz M (2002) Hereditary deafness and phenotyping in humans. Br Med Bull 63:73–94

    CAS  PubMed  Google Scholar 

  • Bond SR, Naus CC (2014) The pannexins: past and present. Front Physiol 5:58

    PubMed Central  PubMed  Google Scholar 

  • Boyce M, Bryant KF, Jousse C, Long K, Harding HP, Scheuner D, Kaufman RJ, Ma D, Coen DM, Ron D, Yuan J (2005) A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307:935–939

    CAS  PubMed  Google Scholar 

  • Bruzzone R, White TW, Scherer SS, Fischbeck KH, Paul DL (1994) Null mutations of connexin32 in patients with X-linked Charcot-Marie-Tooth disease. Neuron 13:1253–1260

    CAS  PubMed  Google Scholar 

  • Bruzzone R, Veronesi V, Gomes D, Bicego M, Duval N, Marlin S, Petit C, D’Andrea P, White TW (2003) Loss-of-function and residual channel activity of connexin26 mutations associated with non-syndromic deafness. FEBS Lett 533:79–88

    CAS  PubMed  Google Scholar 

  • Bukauskas FF, Verselis VK (2004) Gap junction channel gating. Biochim Biophys Acta 1662:42–60

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I, Vidaud M, Abel U, Dal-Cortivo L, Caccavelli L, Mahlaoui N, Kiermer V, Mittelstaedt D, Bellesme C, Lahlou N, Lefrère F, Blanche S, Audit M, Payen E, Leboulch P, l'Homme B, Bougnères P, Von Kalle C, Fischer A, Cavazzana-Calvo M, Aubourg P (2009) Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326:818–823

    CAS  PubMed  Google Scholar 

  • Castillo FJ del, Rodriguez-Ballesteros M, Alvarez A, Hutchin T, Leonardi E, Oliveira CAde, Azaiez H, Brownstein Z, Avenarius MR, Marlin S, Pandya A, Shahin H, Siemering KR, Weil D, Wuyts W, Aguirre LA, Martín Y, Moreno-Pelayo MA, Villamar M, Avraham KB, Dahl HH, Kanaan M, Nance WE, Petit C, Smith RJ, Van Camp G, Sartorato EL, Murgia A, Moreno F, Castillo I del (2005) A novel deletion involving the connexin-30 gene, del(GJB6-d13s1854), found in trans with mutations in the GJB2 gene (connexin-26) in subjects with DFNB1 non-syndromic hearing impairment. J Med Genet 42:588–594

  • Castillo I del, Villamar M, Moreno-Pelayo MA, Castillo FJ del, Alvarez A, Telleria D, Menendez I, Moreno F (2002) A deletion involving the connexin 30 gene in nonsyndromic hearing impairment. N Engl J Med 346:243–249

  • Chan DK, Chang KW (2014) GJB2-associated hearing loss: systematic review of worldwide prevalence, genotype, and auditory phenotype. Laryngoscope 124:E34–E53

    PubMed  Google Scholar 

  • Chang Q, Tang W, Ahmad S, Zhou B, Lin X (2008) Gap junction mediated intercellular metabolite transfer in the cochlea is compromised in connexin30 null mice. PLoS One 3:e4088

    PubMed Central  PubMed  Google Scholar 

  • Chanoux RA, Rubenstein RC (2012) Molecular chaperones as targets to circumvent the CFTR defect in cystic fibrosis. Front Pharmacol 3:137

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER, Armstrong AJ, Penuela S, Laird DW, Salvesen GS, Isakson BE, Bayliss DA, Ravichandran KS (2010) Pannexin 1 channels mediate “find-me” signal release and membrane permeability during apoptosis. Nature 467:863–867

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen Y, Zhou Y, Lin X, Wong HC, Xu Q, Jiang J, Wang S, Lurtz MM, Louis CF, Veenstra RD, Yang JJ (2011) Molecular interaction and functional regulation of connexin50 gap junctions by calmodulin. Biochem J 435:711–722

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chi J, Li L, Liu M, Tan J, Tang C, Pan Q, Wang D, Zhang Z (2012) Pathogenic connexin-31 forms constitutively active hemichannels to promote necrotic cell death. PLoS One 7:e32531

    PubMed Central  CAS  PubMed  Google Scholar 

  • Christophersen IE, Holmegard HN, Jabbari J, Sajadieh A, Haunso S, Tveit A, Svendsen JH, Olesen MS (2013) Rare variants in GJA5 are associated with early-onset lone atrial fibrillation. Can J Cardiol 29:111–116

    PubMed  Google Scholar 

  • Churko JM, Langlois S, Pan X, Shao Q, Laird DW (2010) The potency of the fs260 connexin43 mutant to impair keratinocyte differentiation is distinct from other disease-linked connexin43 mutants. Biochem J 429:473–483

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cohen-Salmon M, Ott T, Michel V, Hardelin JP, Perfettini I, Eybalin M, Wu T, Marcus DC, Wangemann P, Willecke K, Petit C (2002) Targeted ablation of connexin26 in the inner ear epithelial gap junction network causes hearing impairment and cell death. Curr Biol 12:1106–1111

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cohn ES, Kelley PM, Fowler TW, Gorga MP, Lefkowitz DM, Kuehn HJ, Schaefer GB, Gobar LS, Hahn FJ, Harris DJ, Kimberling WJ (1999) Clinical studies of families with hearing loss attributable to mutations in the connexin 26 gene (GJB2/DFNB1). Pediatrics 103:546–550

    CAS  PubMed  Google Scholar 

  • Common JE, Bitner-Glindzicz M, O’Toole EA, Barnes MR, Jenkins L, Forge A, Kelsell DP (2005) Specific loss of connexin 26 expression in ductal sweat gland epithelium associated with the deletion mutation del(GJB6-D13S1830). Clin Exp Dermatol 30:688–693

    CAS  PubMed  Google Scholar 

  • Coutinho P, Qiu C, Frank S, Tamber K, Becker D (2003) Dynamic changes in connexin expression correlate with key events in the wound healing process. Cell Biol Int 27:525–541

    CAS  PubMed  Google Scholar 

  • Crispino G, Di Pasquale G, Scimemi P, Rodriguez L, Galindo Ramirez F, De Siati RD, Santarelli RM, Arslan E, Bortolozzi M, Chiorini JA, Mammano F (2011) BAAV mediated GJB2 gene transfer restores gap junction coupling in cochlear organotypic cultures from deaf Cx26Sox10Cre mice. PLoS One 6:e23279

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cronin M, Anderson PN, Green CR, Becker DL (2006) Antisense delivery and protein knockdown within the intact central nervous system. Front Biosci 11:2967–2975

    CAS  PubMed  Google Scholar 

  • Cronin M, Anderson PN, Cook JE, Green CR, Becker DL (2008) Blocking connexin43 expression reduces inflammation and improves functional recovery after spinal cord injury. Mol Cell Neurosci 39:152–160

    CAS  PubMed  Google Scholar 

  • Dai P, Nakagami T, Tanaka H, Hitomi T, Takamatsu T (2007) Cx43 mediates TGF-beta signaling through competitive smads binding to microtubules. Mol Biol Cell 18:2264–2273

    PubMed Central  CAS  PubMed  Google Scholar 

  • Das Sarma J, Das S, Koval M (2005) Regulation of connexin43 oligomerization is saturable. Cell Commun Adhes 12:237–247

    CAS  PubMed  Google Scholar 

  • Das Sarma J, Kaplan BE, Willemsen D, Koval M (2008) Identification of rab20 as a potential regulator of connexin 43 trafficking. Cell Commun Adhes 15:65–74

    CAS  PubMed  Google Scholar 

  • Das S, Smith TD, Sarma JD, Ritzenthaler JD, Maza J, Kaplan BE, Cunningham LA, Suaud L, Hubbard MJ, Rubenstein RC, Koval M (2009) ERp29 restricts connexin43 oligomerization in the endoplasmic reticulum. Mol Biol Cell 20:2593–2604

    PubMed Central  CAS  PubMed  Google Scholar 

  • Degen J, Schutz M, Dicke N, Strenzke N, Jokwitz M, Moser T, Willecke K (2011) Connexin32 can restore hearing in connexin26 deficient mice. Eur J Cell Biol 90:817–824

    CAS  PubMed  Google Scholar 

  • Delmar M, Coombs W, Sorgen P, Duffy HS, Taffet SM (2004) Structural bases for the chemical regulation of connexin43 channels. Cardiovasc Res 62:268–275

    CAS  PubMed  Google Scholar 

  • Deschenes SM, Walcott JL, Wexler TL, Scherer SS, Fischbeck KH (1997) Altered trafficking of mutant connexin32. J Neurosci 17:9077–9084

    CAS  PubMed  Google Scholar 

  • Di WL, Rugg EL, Leigh IM, Kelsell DP (2001) Multiple epidermal connexins are expressed in different keratinocyte subpopulations including connexin 31. J Invest Dermatol 117:958–964

    CAS  PubMed  Google Scholar 

  • Di WL, Monypenny J, Common JE, Kennedy CT, Holland KA, Leigh IM, Rugg EL, Zicha D, Kelsell DP (2002) Defective trafficking and cell death is characteristic of skin disease-associated connexin 31 mutations. Hum Mol Genet 11:2005–2014

    CAS  PubMed  Google Scholar 

  • Diestel S, Richard G, Doring B, Traub O (2002) Expression of a connexin31 mutation causing erythrokeratodermia variabilis is lethal for HeLa cells. Biochem Biophys Res Commun 296:721–728

    CAS  PubMed  Google Scholar 

  • Diez JA, Ahmad S, Evans WH (1999) Assembly of heteromeric connexons in guinea-pig liver en route to the Golgi apparatus, plasma membrane and gap junctions. Eur J Biochem 262:142–148

    CAS  PubMed  Google Scholar 

  • Dobrowolski R, Sommershof A, Willecke K (2007) Some oculodentodigital dysplasia-associated Cx43 mutations cause increased hemichannel activity in addition to deficient gap junction channels. J Membr Biol 219:9–17

    CAS  PubMed  Google Scholar 

  • Dreses-Werringloer U, Lambert JC, Vingtdeux V, Zhao H, Vais H, Siebert A, Jain A, Koppel J, Rovelet-Lecrux A, Hannequin D, Pasquier F, Galimberti D, Scarpini E, Mann D, Lendon C, Campion D, Amouyel P, Davies P, Foskett JK, Campagne F, Marambaud P (2008) A polymorphism in CALHM1 influences Ca2+ homeostasis, Abeta levels, and Alzheimer’s disease risk. Cell 133:1149–1161

    PubMed Central  CAS  PubMed  Google Scholar 

  • Essenfelder GM, Bruzzone R, Lamartine J, Charollais A, Blanchet-Bardon C, Barbe MT, Meda P, Waksman G (2004) Connexin30 mutations responsible for hidrotic ectodermal dysplasia cause abnormal hemichannel activity. Hum Mol Genet 13:1703–1714

    CAS  PubMed  Google Scholar 

  • Falk MM, Kumar NM, Gilula NB (1994) Membrane insertion of gap junction connexins: polytopic channel forming membrane proteins. J Cell Biol 127:343–355

    CAS  PubMed  Google Scholar 

  • Falk MM, Fong JT, Kells RM, O’Laughlin MC, Kowal TJ, Thevenin AF (2012) Degradation of endocytosed gap junctions by autophagosomal and endo-/lysosomal pathways: a perspective. J Membr Biol 245:465–476

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fong JT, Kells RM, Gumpert AM, Marzillier JY, Davidson MW, Falk MM (2012) Internalized gap junctions are degraded by autophagy. Autophagy 8:794–811

    PubMed Central  CAS  PubMed  Google Scholar 

  • Foote CI, Zhou L, Zhu X, Nicholson BJ (1998) The pattern of disulfide linkages in the extracellular loop regions of connexin 32 suggests a model for the docking interface of gap junctions. J Cell Biol 140:1187–1197

    PubMed Central  CAS  PubMed  Google Scholar 

  • Forge A, Becker D, Casalotti S, Edwards J, Marziano N, Nevill G (2003a) Gap junctions in the inner ear: comparison of distribution patterns in different vertebrates and assessement of connexin composition in mammals. J Comp Neurol 467:207–231

    PubMed  Google Scholar 

  • Forge A, Marziano NK, Casalotti SO, Becker DL, Jagger D (2003b) The inner ear contains heteromeric channels composed of cx26 and cx30 and deafness-related mutations in cx26 have a dominant negative effect on cx30. Cell Commun Adhes 10:341–346

    CAS  PubMed  Google Scholar 

  • Forge A, Jagger DJ, Kelly JJ, Taylor RR (2013) Connexin30-mediated intercellular communication plays an essential role in epithelial repair in the cochlea. J Cell Sci 126:1703–1712

    CAS  PubMed  Google Scholar 

  • Frischmeyer PA, Dietz HC (1999) Nonsense-mediated mRNA decay in health and disease. Hum Mol Genet 8:1893–1900

    CAS  PubMed  Google Scholar 

  • Gaietta G, Deerinck TJ, Adams SR, Bouwer J, Tour O, Laird DW, Sosinsky GE, Tsien RY, Ellisman MH (2002) Multicolor and electron microscopic imaging of connexin trafficking. Science 296:503–507

    CAS  PubMed  Google Scholar 

  • Gao J, Sun X, Moore LC, White TW, Brink PR, Mathias RT (2011) Lens intracellular hydrostatic pressure is generated by the circulation of sodium and modulated by gap junction coupling. J Gen Physiol 137:507–520

    PubMed Central  CAS  PubMed  Google Scholar 

  • Geel M van, Steensel MA van, Steijlen PM (2002) Connexin 30.3 (GJB4) is not required for normal skin function in humans. Br J Dermatol 147:1275–1277

  • Gemel J, Valiunas V, Brink PR, Beyer EC (2004) Connexin43 and connexin26 form gap junctions, but not heteromeric channels in co-expressing cells. J Cell Sci 117:2469–2480

    CAS  PubMed  Google Scholar 

  • Gemel J, Simon AR, Patel D, Xu Q, Matiukas A, Veenstra RD, Beyer EC (2014) Degradation of a connexin40 mutant linked to atrial fibrillation is accelerated. J Mol Cell Cardiol 74:330–339

    CAS  PubMed  Google Scholar 

  • Gerido DA, DeRosa AM, Richard G, White TW (2007) Aberrant hemichannel properties of Cx26 mutations causing skin disease and deafness. Am J Physiol Cell Physiol 293:C337–C345

    CAS  PubMed  Google Scholar 

  • Ghatnekar GS, O’Quinn MP, Jourdan LJ, Gurjarpadhye AA, Draughn RL, Gourdie RG (2009) Connexin43 carboxyl-terminal peptides reduce scar progenitor and promote regenerative healing following skin wounding. Regen Med 4:205–23

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ghatnekar G, Grek C, Armstrong DG, Desai SC, Gourdie R (2014) The effect of a Connexin43-based peptide on the healing of chronic venous leg ulcers: a multicenter, randomized trial. J Invest Dermatol (in press)

  • Giepmans BN, Verlaan I, Hengeveld T, Janssen H, Calafat J, Falk MM, Moolenaar WH (2001a) Gap junction protein connexin-43 interacts directly with microtubules. Curr Biol 11:1364–1368

    CAS  PubMed  Google Scholar 

  • Giepmans BN, Verlaan I, Moolenaar WH (2001b) Connexin-43 interactions with ZO-1 and alpha- and beta-tubulin. Cell Commun Adhes 8:219–223

    CAS  PubMed  Google Scholar 

  • Gollob MH, Jones DL, Krahn AD, Danis L, Gong XQ, Shao Q, Liu X, Veinot JP, Tang AS, Stewart AF, Tesson F, Klein GJ, Yee R, Skanes AC, Guiraudon GM, Ebihara L, Bai D (2006) Somatic mutations in the connexin 40 gene (GJA5) in atrial fibrillation. N Engl J Med 354:2677–2688

    CAS  PubMed  Google Scholar 

  • Gomez-Hernandez JM, Miguel M de, Larrosa B, Gonzalez D, Barrio LC (2003) Molecular basis of calcium regulation in connexin-32 hemichannels. Proc Natl Acad Sci U S A 100:16030–16035

  • Gong T, Wang Q, Lin Z, Chen ML, Sun GZ (2012) Endoplasmic reticulum (ER) stress inhibitor salubrinal protects against ceramide-induced SH-SY5Y cell death. Biochem Biophys Res Commun 427:461–465

    CAS  PubMed  Google Scholar 

  • Gong XQ, Shao Q, Lounsbury CS, Bai D, Laird DW (2006) Functional characterization of a GJA1 frameshift mutation causing oculodentodigital dysplasia and palmoplantar keratoderma. J Biol Chem 281:31801–31811

    CAS  PubMed  Google Scholar 

  • Gong XQ, Nakagawa S, Tsukihara T, Bai D (2013) A mechanism of gap junction docking revealed by functional rescue of a human-disease-linked connexin mutant. J Cell Sci 126:3113–3120

    CAS  PubMed  Google Scholar 

  • Gourdie RG, Severs NJ, Green CR, Rothery S, Germroth P, Thompson RP (1993) The spatial distribution and relative abundance of gap-junctional connexin40 and connexin43 correlate to functional properties of components of the cardiac atrioventricular conduction system. J Cell Sci 105:985–991

    CAS  PubMed  Google Scholar 

  • Gray KA, Daugherty LC, Gordon SM, Seal RL, Wright MW, Bruford EA (2013) Genenames.org: the HGNC resources in 2013. Nucleic Acids Res 41:D545–D552

    PubMed Central  CAS  PubMed  Google Scholar 

  • Harris AL (2001) Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys 34:325–472

    CAS  PubMed  Google Scholar 

  • He LQ, Liu Y, Cai F, Tan ZP, Pan Q, Liang DS, Long ZG, Wu LQ, Huang LQ, Dai HP, Xia K, Xia JH, Zhang ZH (2005) Intracellular distribution, assembly and effect of disease-associated connexin 31 mutants in HeLa cells. Acta Biochim Biophys Sin (Shanghai) 37:547–554

    CAS  Google Scholar 

  • Hetz C, Chevet E, Harding HP (2013) Targeting the unfolded protein response in disease. Nat Rev Drug Discov 12:703–719

    CAS  PubMed  Google Scholar 

  • Hilgert N, Smith RJ, Van Camp G (2009) Function and expression pattern of nonsyndromic deafness genes. Curr Mol Med 9:546–564

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hoang Dinh E, Ahmad S, Chang Q, Tang W, Stong B, Lin X (2009) Diverse deafness mechanisms of connexin mutations revealed by studies using in vitro approaches and mouse models. Brain Res 1277:52–69

    CAS  PubMed  Google Scholar 

  • Hong HM, Yang JJ, Shieh JC, Lin ML, Li SY (2010a) Novel mutations in the connexin43 (GJA1) and GJA1 pseudogene may contribute to nonsyndromic hearing loss. Hum Genet 127:545–551

    CAS  PubMed  Google Scholar 

  • Hong HM, Yang JJ, Su CC, Chang JY, Li TC, Li SY (2010b) A novel mutation in the connexin 29 gene may contribute to nonsyndromic hearing loss. Hum Genet 127:191–199

    CAS  PubMed  Google Scholar 

  • Hu Y, Chen IP, Almeida S de, Tiziani V, Do Amaral CM, Gowrishankar K, Passos-Bueno MR, Reichenberger EJ (2013) A novel autosomal recessive GJA1 missense mutation linked to craniometaphyseal dysplasia. PLoS One 8:e73576

  • Huang T, Shao Q, MacDonald A, Xin L, Lorentz R, Bai D, Laird DW (2013) Autosomal recessive GJA1 (Cx43) gene mutations cause oculodentodigital dysplasia by distinct mechanisms. J Cell Sci 126:2857–2866

    CAS  PubMed  Google Scholar 

  • Igarashi T, Finet JE, Takeuchi A, Fujino Y, Strom M, Greener ID, Rosenbaum DS, Donahue JK (2012) Connexin gene transfer preserves conduction velocity and prevents atrial fibrillation. Circulation 125:216–225

    PubMed Central  CAS  PubMed  Google Scholar 

  • Inoshita A, Karasawa K, Funakubo M, Miwa A, Ikeda K, Kamiya K (2014) Dominant negative connexin26 mutation R75W causing severe hearing loss influences normal programmed cell death in postnatal organ of Corti. BMC Genet 15:1

    PubMed Central  PubMed  Google Scholar 

  • Jagger DJ, Forge A (2006) Compartmentalized and signal-selective gap junctional coupling in the hearing cochlea. J Neurosci 26:1260–1268

    CAS  PubMed  Google Scholar 

  • Jagger DJ, Nevill G, Forge A (2010) The membrane properties of cochlear root cells are consistent with roles in potassium recirculation and spatial buffering. J Assoc Res Otolaryngol 11:435–448

    PubMed Central  Google Scholar 

  • Jiang JX, Paul DL, Goodenough DA (1993) Posttranslational phosphorylation of lens fiber connexin46: a slow occurrence. Invest Ophthalmol Vis Sci 34:3558–3565

    CAS  PubMed  Google Scholar 

  • Kaufman J, Gordon C, Bergamaschi R, Wang HZ, Cohen IS, Valiunas V, Brink PR (2013) The effects of the histone deacetylase inhibitor 4-phenylbutyrate on gap junction conductance and permeability. Front Pharmacol 4:111

    PubMed Central  PubMed  Google Scholar 

  • Kelley PM, Harris DJ, Comer BC, Askew JW, Fowler T, Smith SD, Kimberling WJ (1998) Novel mutations in the connexin 26 gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss. Am J Hum Genet 62:792–799

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kelly JJ, Forge A, Jagger DJ (2011) Development of gap junctional intercellular communication within the lateral wall of the rat cochlea. Neuroscience 180:360–369

    CAS  PubMed  Google Scholar 

  • Khan Z, Akhtar M, Asklund T, Juliusson B, Almqvist PM, Ekstrom TJ (2007) HDAC inhibition amplifies gap junction communication in neural progenitors: potential for cell-mediated enzyme prodrug therapy. Exp Cell Res 313:2958–2967

    CAS  PubMed  Google Scholar 

  • Kikuchi T, Kimura RS, Paul DL, Adams JC (1995) Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat Embryol (Berl) 191:101–118

    CAS  Google Scholar 

  • Kleopa KA (2011) The role of gap junctions in Charcot-Marie-Tooth disease. J Neurosci 31:17753–17760

    CAS  PubMed  Google Scholar 

  • Kleopa KA, Abrams CK, Scherer SS (2012) How do mutations in GJB1 cause X-linked Charcot-Marie-Tooth disease? Brain Res 1487:198–205

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kochanek KD, Xu J, Murphy SL, Minino AM, Kung HC (2011) Deaths: final data for 2009. Natl Vital Stat Rep 60:1–116

    PubMed  Google Scholar 

  • Koval M (2006) Pathways and control of connexin oligomerization. Trends Cell Biol 16:159–166

    CAS  PubMed  Google Scholar 

  • Koval M, Harley JE, Hick E, Steinberg TH (1997) Connexin46 is retained as monomers in a trans-Golgi compartment of osteoblastic cells. J Cell Biol 137:847–857

    PubMed Central  CAS  PubMed  Google Scholar 

  • Koval M, Molina SA, Burt JM (2014) Mix and match: investigating heteromeric and heterotypic gap junction channels in model systems and native tissues. FEBS Lett 588:1193–1204

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kudo T, Ikeda K, Kure S, Matsubara Y, Oshima T, Watanabe K, Kawase T, Narisawa K, Takasaka T (2000) Novel mutations in the connexin 26 gene (GJB2) responsible for childhood deafness in the Japanese population. Am J Med Genet 90:141–145

    CAS  PubMed  Google Scholar 

  • Kudo T, Kure S, Ikeda K, Xia AP, Katori Y, Suzuki M, Kojima K, Ichinohe A, Suzuki Y, Aoki Y, Kobayashi T, Matsubara Y (2003) Transgenic expression of a dominant-negative connexin26 causes degeneration of the organ of Corti and non-syndromic deafness. Hum Mol Genet 12:995–1004

    CAS  PubMed  Google Scholar 

  • Kumar NM, Gilula NB (1992) Molecular biology and genetics of gap junction channels. Semin Cell Biol 3:3–16

    CAS  PubMed  Google Scholar 

  • Lagree V, Brunschwig K, Lopez P, Gilula NB, Richard G, Falk MM (2003) Specific amino-acid residues in the N-terminus and TM3 implicated in channel function and oligomerization compatibility of connexin43. J Cell Sci 116:3189–3201

    CAS  PubMed  Google Scholar 

  • Laird DW (2006) Life cycle of connexins in health and disease. Biochem J 394:527–543

    PubMed Central  CAS  PubMed  Google Scholar 

  • Laird DW (2010) The gap junction proteome and its relationship to disease. Trends Cell Biol 20:92–101

    CAS  PubMed  Google Scholar 

  • Laird DW (2014) Syndromic and non-syndromic disease-linked Cx43 mutations. FEBS Lett 588:1339–1348

    CAS  PubMed  Google Scholar 

  • Laird DW, Castillo M, Kasprzak L (1995) Gap junction turnover, intracellular trafficking, and phosphorylation of connexin43 in brefeldin A-treated rat mammary tumor cells. J Cell Biol 131:1193–1203

    CAS  PubMed  Google Scholar 

  • Lan Z, Kurata WE, Martyn KD, Jin C, Lau AF (2005) Novel rab GAP-like protein, CIP85, interacts with connexin43 and induces its degradation. Biochemistry 44:2385–2396

    PubMed Central  CAS  PubMed  Google Scholar 

  • Langlois S, Cowan KN, Shao Q, Cowan BJ, Laird DW (2008) Caveolin-1 and −2 interact with connexin43 and regulate gap junctional intercellular communication in keratinocytes. Mol Biol Cell 19:912–928

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lauf U, Giepmans BN, Lopez P, Braconnot S, Chen SC, Falk MM (2002) Dynamic trafficking and delivery of connexons to the plasma membrane and accretion to gap junctions in living cells. Proc Natl Acad Sci U S A 99:10446–10451

    PubMed Central  CAS  PubMed  Google Scholar 

  • Leithe E, Kjenseth A, Sirnes S, Stenmark H, Brech A, Rivedal E (2009) Ubiquitylation of the gap junction protein connexin-43 signals its trafficking from early endosomes to lysosomes in a process mediated by Hrs and Tsg101. J Cell Sci 122:3883–3893

    CAS  PubMed  Google Scholar 

  • Levine BL, Humeau LM, Boyer J, MacGregor RR, Rebello T, Lu X, Binder GK, Slepushkin V, Lemiale F, Mascola JR, Bushman FD, Dropulic B, June CH (2006) Gene transfer in humans using a conditionally replicating lentiviral vector. Proc Natl Acad Sci U S A 103:17372–17377

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liang GS, Miguel M de, Gomez-Hernandez JM, Glass JD, Scherer SS, Mintz M, Barrio LC, Fischbeck KH (2005) Severe neuropathy with leaky connexin32 hemichannels. Ann Neurol 57:749–754

  • Liang WG, Su CC, Nian JH, Chiang AS, Li SY, Yang JJ (2011) Human connexin30.2/31.3 (GJC3) does not form functional gap junction channels but causes enhanced ATP release in HeLa cells. Cell Biochem Biophys 61:189–197

    CAS  PubMed  Google Scholar 

  • Lichtenstein A, Gaietta GM, Deerinck TJ, Crum J, Sosinsky GE, Beyer EC, Berthoud VM (2009) The cytoplasmic accumulations of the cataract-associated mutant, connexin50P88S, are long-lived and form in the endoplasmic reticulum. Exp Eye Res 88:600–609

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lubkemeier I, Andrie R, Lickfett L, Bosen F, Stockigt F, Dobrowolski R, Draffehn AM, Fregeac J, Schultze JL, Bukauskas FF, Schrickel JW, Willecke K (2013) The Connexin40A96S mutation from a patient with atrial fibrillation causes decreased atrial conduction velocities and sustained episodes of induced atrial fibrillation in mice. J Mol Cell Cardiol 65:19–32

    PubMed  Google Scholar 

  • Ma Z, Siebert AP, Cheung KH, Lee RJ, Johnson B, Cohen AS, Vingtdeux V, Marambaud P, Foskett JK (2012) Calcium homeostasis modulator 1 (CALHM1) is the pore-forming subunit of an ion channel that mediates extracellular Ca2+ regulation of neuronal excitability. Proc Natl Acad Sci U S A 109:E1963–E1971

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maeda Y, Fukushima K, Nishizaki K, Smith RJ (2005) In vitro and in vivo suppression of GJB2 expression by RNA interference. Hum Mol Genet 14:1641–1650

    CAS  PubMed  Google Scholar 

  • Maeda S, Nakagawa S, Suga M, Yamashita E, Oshima A, Fujiyoshi Y, Tsukihara T (2009a) Structure of the connexin 26 gap junction channel at 3.5 Å resolution. Nature 458:597–602

    CAS  PubMed  Google Scholar 

  • Maeda Y, Sheffield AM, Smith RJ (2009b) Therapeutic regulation of gene expression in the inner ear using RNA interference. Adv Otorhinolaryngol 66:13–36

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maltzahn J von, Kreuzberg MM, Matern G, Euwens C, Hoher T, Worsdorfer P, Willecke K (2009) C-terminal tagging with eGFP yields new insights into expression of connexin45 but prevents rescue of embryonic lethal connexin45-deficient mice. Eur J Cell Biol 88:481–494

  • Martin PE, Blundell G, Ahmad S, Errington RJ, Evans WH (2001) Multiple pathways in the trafficking and assembly of connexin 26, 32 and 43 into gap junction intercellular communication channels. J Cell Sci 114:3845–3855

    CAS  PubMed  Google Scholar 

  • Martin PE, Easton JA, Hodgins MB, Wright CS (2014) Connexins: sensors of epidermal integrity that are therapeutic targets. FEBS Lett 588:1304–1314

    CAS  PubMed  Google Scholar 

  • Marziano NK, Casalotti SO, Portelli AE, Becker DL, Forge A (2003) Mutations in the gene for connexin 26 (GJB2) that cause hearing loss have a dominant negative effect on connexin 30. Hum Mol Genet 12:805–812

    CAS  PubMed  Google Scholar 

  • Mathias RT, White TW, Gong X (2010) Lens gap junctions in growth, differentiation, and homeostasis. Physiol Rev 90:179–206

    CAS  PubMed  Google Scholar 

  • Maza J, Das Sarma J, Koval M (2005) Defining a minimal motif required to prevent connexin oligomerization in the endoplasmic reticulum. J Biol Chem 280:21115–21121

    CAS  PubMed  Google Scholar 

  • Menichella DM, Goodenough DA, Sirkowski E, Scherer SS, Paul DL (2003) Connexins are critical for normal myelination in the CNS. J Neurosci 23:5963–5973

    CAS  PubMed  Google Scholar 

  • Mese G, Sellitto C, Li L, Wang HZ, Valiunas V, Richard G, Brink PR, White TW (2011) The Cx26-G45E mutation displays increased hemichannel activity in a mouse model of the lethal form of keratitis-ichthyosis-deafness syndrome. Mol Biol Cell 22:4776–4786

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mhaske PV, Levit NA, Li L, Wang HZ, Lee JR, Shuja Z, Brink PR, White TW (2013) The human Cx26-D50A and Cx26-A88V mutations causing keratitis-ichthyosis-deafness syndrome display increased hemichannel activity. Am J Physiol Cell Physiol 304:C1150–C1158

  • Minogue PJ, Liu X, Ebihara L, Beyer EC, Berthoud VM (2005) An aberrant sequence in a connexin46 mutant underlies congenital cataracts. J Biol Chem 280:40788–40795

    PubMed Central  CAS  PubMed  Google Scholar 

  • Minogue PJ, Tong JJ, Arora A, Russell-Eggitt I, Hunt DM, Moore AT, Ebihara L, Beyer EC, Berthoud VM (2009) A mutant connexin50 with enhanced hemichannel function leads to cell death. Invest Ophthalmol Vis Sci 50:5837–5845

    PubMed Central  PubMed  Google Scholar 

  • Miwa T, Minoda R, Ise M, Yamada T, Yumoto E (2013) Mouse otocyst transuterine gene transfer restores hearing in mice with connexin 30 deletion-associated hearing loss. Mol Ther 21:1142–1150

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moore K, Bryant ZJ, Ghatnekar G, Singh UP, Gourdie RG, Potts JD (2013) A synthetic connexin 43 mimetic peptide augments corneal wound healing. Exp Eye Res 115:178–188

    CAS  PubMed  Google Scholar 

  • Morell RJ, Kim HJ, Hood LJ, Goforth L, Friderici K, Fisher R, Van Camp G, Berlin CI, Oddoux C, Ostrer H, Keats B, Friedman TB (1998) Mutations in the connexin 26 gene (GJB2) among Ashkenazi Jews with nonsyndromic recessive deafness. N Engl J Med 339:1500–1505

    CAS  PubMed  Google Scholar 

  • Muller DJ, Hand GM, Engel A, Sosinsky GE (2002) Conformational changes in surface structures of isolated connexin 26 gap junctions. EMBO J 21:3598–3607

    PubMed Central  CAS  PubMed  Google Scholar 

  • Musil LS, Goodenough DA (1993) Multisubunit assembly of an integral plasma membrane channel protein, gap junction connexin43, occurs after exit from the ER. Cell 74:1065–1077

    CAS  PubMed  Google Scholar 

  • Musil LS, Beyer EC, Goodenough DA (1990) Expression of the gap junction protein connexin43 in embryonic chick lens: molecular cloning, ultrastructural localization, and post-translational phosphorylation. J Membr Biol 116:163–175

    CAS  PubMed  Google Scholar 

  • Nagy JI, Ionescu AV, Lynn BD, Rash JE (2003) Coupling of astrocyte connexins Cx26, Cx30, Cx43 to oligodendrocyte Cx29, Cx32, Cx47: implications from normal and connexin32 knockout mice. Glia 44:205–218

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nakagawa S, Gong XQ, Maeda S, Dong Y, Misumi Y, Tsukihara T, Bai D (2011) Asparagine 175 of connexin32 is a critical residue for docking and forming functional heterotypic gap junction channels with connexin26. J Biol Chem 286:19672–19681

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nualart-Marti A, Solsona C, Fields RD (2013) Gap junction communication in myelinating glia. Biochim Biophys Acta 1828:69–78

    CAS  PubMed  Google Scholar 

  • O’Carroll SJ, Becker DL, Davidson JO, Gunn AJ, Nicholson LF, Green CR (2013) The use of connexin-based therapeutic approaches to target inflammatory diseases. Methods Mol Biol 1037:519–546

    PubMed  Google Scholar 

  • Ongstad EL, O’Quinn MP, Ghatnekar GS, Yost MJ, Gourdie RG (2013) A Connexin43 mimetic peptide promotes regenerative healing and improves mechanical properties in skin and heart. Adv Wound Care (New Rochelle) 2:55–62

    Google Scholar 

  • Orthmann-Murphy JL, Enriquez AD, Abrams CK, Scherer SS (2007) Loss-of-function GJA12/Connexin47 mutations cause Pelizaeus-Merzbacher-like disease. Mol Cell Neurosci 34:629–641

    PubMed Central  CAS  PubMed  Google Scholar 

  • Panchin Y, Kelmanson I, Matz M, Lukyanov K, Usman N, Lukyanov S (2000) A ubiquitous family of putative gap junction molecules. Curr Biol 10:R473–R474

    CAS  PubMed  Google Scholar 

  • Pantano S, Zonta F, Mammano F (2008) A fully atomistic model of the Cx32 connexon. PLoS One 3:e2614

    PubMed Central  PubMed  Google Scholar 

  • Paznekas WA, Boyadjiev SA, Shapiro RE, Daniels O, Wollnik B, Keegan CE, Innis JW, Dinulos MB, Christian C, Hannibal MC, Jabs EW (2003) Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am J Hum Genet 72:408–418

    PubMed Central  CAS  PubMed  Google Scholar 

  • Penuela S, Bhalla R, Gong XQ, Cowan KN, Celetti SJ, Cowan BJ, Bai D, Shao Q, Laird DW (2007) Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins. J Cell Sci 120:3772–3783

    CAS  PubMed  Google Scholar 

  • Penuela S, Gehi R, Laird DW (2013) The biochemistry and function of pannexin channels. Biochim Biophys Acta 1828:15–22

    CAS  PubMed  Google Scholar 

  • Penuela S, Harland L, Simek J, Laird DW (2014) Pannexin channels and their links to human disease. Biochem J 461:371–381

    CAS  PubMed  Google Scholar 

  • Peracchia C, Sotkis A, Wang XG, Peracchia LL, Persechini A (2000) Calmodulin directly gates gap junction channels. J Biol Chem 275:26220–26224

    CAS  PubMed  Google Scholar 

  • Phelan P (2005) Innexins: members of an evolutionarily conserved family of gap-junction proteins. Biochim Biophys Acta 1711:225–245

    CAS  PubMed  Google Scholar 

  • Pizzuti A, Flex E, Mingarelli R, Salpietro C, Zelante L, Dallapiccola B (2004) A homozygous GJA1 gene mutation causes a Hallermann-Streiff/ODDD spectrum phenotype. Hum Mutat 23:286

    PubMed  Google Scholar 

  • Ponsaerts R, De Vuyst E, Retamal M, D’Hondt C, Vermeire D, Wang N, De Smedt H, Zimmermann P, Himpens B, Vereecke J, Leybaert L, Bultynck G (2010) Intramolecular loop/tail interactions are essential for connexin 43-hemichannel activity. FASEB J 24:4378–4395

    CAS  PubMed  Google Scholar 

  • Qiu C, Coutinho P, Frank S, Franke S, Law LY, Martin P, Green CR, Becker DL (2003) Targeting connexin43 expression accelerates the rate of wound repair. Curr Biol 13:1697–1703

    CAS  PubMed  Google Scholar 

  • Qu C, Gardner P, Schrijver I (2009) The role of the cytoskeleton in the formation of gap junctions by Connexin 30. Exp Cell Res 315:1683–1692

    CAS  PubMed  Google Scholar 

  • Ren Q, Riquelme MA, Xu J, Yan X, Nicholson BJ, Gu S, Jiang JX (2013) Cataract-causing mutation of human connexin 46 impairs gap junction, but increases hemichannel function and cell death. PLoS One 8:e74732

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ressot C, Gomes D, Dautigny A, Pham-Dinh D, Bruzzone R (1998) Connexin32 mutations associated with X-linked Charcot-Marie-Tooth disease show two distinct behaviors: loss of function and altered gating properties. J Neurosci 18:4063–4075

    CAS  PubMed  Google Scholar 

  • Rhee DY, Zhao XQ, Francis RJ, Huang GY, Mably JD, Lo CW (2009) Connexin 43 regulates epicardial cell polarity and migration in coronary vascular development. Development 136:3185–3193

    PubMed Central  CAS  PubMed  Google Scholar 

  • Richard G (2005) Connexin disorders of the skin. Clin Dermatol 23:23–32

    PubMed  Google Scholar 

  • Richardson RJ, Joss S, Tomkin S, Ahmed M, Sheridan E, Dixon MJ (2006) A nonsense mutation in the first transmembrane domain of connexin 43 underlies autosomal recessive oculodentodigital syndrome. J Med Genet 43:e37

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rouan F, White TW, Brown N, Taylor AM, Lucke TW, Paul DL, Munro CS, Uitto J, Hodgins MB, Richard G (2001) trans-dominant inhibition of connexin-43 by mutant connexin-26: implications for dominant connexin disorders affecting epidermal differentiation. J Cell Sci 114:2105–2113

    CAS  PubMed  Google Scholar 

  • Rouan F, Lo CW, Fertala A, Wahl M, Jost M, Rodeck U, Uitto J, Richard G (2003) Divergent effects of two sequence variants of GJB3 (G12D and R32W) on the function of connexin 31 in vitro. Exp Dermatol 12:191–197

    CAS  PubMed  Google Scholar 

  • Rouger H, LeGuern E, Birouk N, Gouider R, Tardieu S, Plassart E, Gugenheim M, Vallat JM, Louboutin JP, Bouche P, Agid Y, Brice A (1997) Charcot-Marie-Tooth disease with intermediate motor nerve conduction velocities: characterization of 14 Cx32 mutations in 35 families. Hum Mutat 10:443–452

    CAS  PubMed  Google Scholar 

  • Rubenstein RC, Zeitlin PL (1998) A pilot clinical trial of oral sodium 4-phenylbutyrate (Buphenyl) in deltaF508-homozygous cystic fibrosis patients: partial restoration of nasal epithelial CFTR function. Am J Respir Crit Care Med 157:484–490

    CAS  PubMed  Google Scholar 

  • Rubenstein RC, Egan ME, Zeitlin PL (1997) In vitro pharmacologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing delta F508-CFTR. J Clin Invest 100:2457–2465

    PubMed Central  CAS  PubMed  Google Scholar 

  • Saez JC, Retamal MA, Basilio D, Bukauskas FF, Bennett MV (2005) Connexin-based gap junction hemichannels: gating mechanisms. Biochim Biophys Acta 1711:215–224

    PubMed Central  CAS  PubMed  Google Scholar 

  • Saez JC, Schalper KA, Retamal MA, Orellana JA, Shoji KF, Bennett MV (2010) Cell membrane permeabilization via connexin hemichannels in living and dying cells. Exp Cell Res 316:2377–2389

    CAS  PubMed  Google Scholar 

  • Sanchez HA, Mese G, Srinivas M, White TW, Verselis VK (2010) Differentially altered Ca2+ regulation and Ca2+ permeability in Cx26 hemichannels formed by the A40V and G45E mutations that cause keratitis ichthyosis deafness syndrome. J Gen Physiol 136:47–62

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sato S, Ward CL, Krouse ME, Wine JJ, Kopito RR (1996) Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. J Biol Chem 271:635–638

    CAS  PubMed  Google Scholar 

  • Sbidian E, Feldmann D, Bengoa J, Fraitag S, Abadie V, Prost Y de, Bodemer C, Hadj-Rabia S (2010) Germline mosaicism in keratitis-ichthyosis-deafness syndrome: pre-natal diagnosis in a familial lethal form. Clin Genet 77:587–592

  • Scott CA, Kelsell DP (2011) Key functions for gap junctions in skin and hearing. Biochem J 438:245–254

    CAS  PubMed  Google Scholar 

  • Seki A, Duffy HS, Coombs W, Spray DC, Taffet SM, Delmar M (2004) Modifications in the biophysical properties of connexin43 channels by a peptide of the cytoplasmic loop region. Circ Res 95:e22–e28

    CAS  PubMed  Google Scholar 

  • Shao Q, Liu Q, Lorentz R, Gong XQ, Bai D, Shaw GS, Laird DW (2012) Structure and functional studies of N-terminal Cx43 mutants linked to oculodentodigital dysplasia. Mol Biol Cell 23:3312–3321

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shaw RM, Fay AJ, Puthenveedu MA, von Zastrow M, Jan YN, Jan LY (2007) Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell 128:547–560

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shiels A, Bennett TM, Hejtmancik JF (2010) Cat-Map: putting cataract on the map. Mol Vis 16:2007–2015

    PubMed Central  CAS  PubMed  Google Scholar 

  • Siebert AP, Ma Z, Grevet JD, Demuro A, Parker I, Foskett JK (2013) Structural and functional similarities of calcium homeostasis modulator 1 (CALHM1) ion channel with connexins, pannexins, and innexins. J Biol Chem 288:6140–6153

    PubMed Central  CAS  PubMed  Google Scholar 

  • Silander K, Meretoja P, Juvonen V, Ignatius J, Pihko H, Saarinen A, Wallden T, Herrgard E, Aula P, Savontaus ML (1998) Spectrum of mutations in finnish patients with Charcot-Marie-Tooth disease and related neuropathies. Hum Mutat 12:59–68

    CAS  PubMed  Google Scholar 

  • Simonsen KT, Moerman DG, Naus CC (2014) Gap junctions in C. elegans. Front Physiol 5:40

    PubMed Central  PubMed  Google Scholar 

  • Smith TD, Mohankumar A, Minogue PJ, Beyer EC, Berthoud VM, Koval M (2012) Cytoplasmic amino acids within the membrane interface region influence connexin oligomerization. J Membr Biol 245:221–230

    PubMed Central  CAS  PubMed  Google Scholar 

  • Solan JL, Lampe PD (2009) Connexin43 phosphorylation: structural changes and biological effects. Biochem J 419:261–272

    PubMed Central  CAS  PubMed  Google Scholar 

  • Solan JL, Lampe PD (2014) Specific Cx43 phosphorylation events regulate gap junction turnover in vivo. FEBS Lett 588:1423–1429

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sosinsky GE, Boassa D, Dermietzel R, Duffy HS, Laird DW, MacVicar B, Naus CC, Penuela S, Scemes E, Spray DC, Thompson RJ, Zhao HB, Dahl G (2011) Pannexin channels are not gap junction hemichannels. Channels (Austin) 5:193–197

    CAS  Google Scholar 

  • Steensel MA van, Spruijt L, Burgt I van der, Bladergroen RS, Vermeer M, Steijlen PM, Geel M van (2005) A 2-bp deletion in the GJA1 gene is associated with oculo-dento-digital dysplasia with palmoplantar keratoderma. Am J Med Genet A 132A:171–174

  • Stewart MK, Gong XQ, Barr KJ, Bai D, Fishman GI, Laird DW (2013) The severity of mammary gland developmental defects is linked to the overall functional status of Cx43 as revealed by genetically modified mice. Biochem J 449:401–413

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stong BC, Chang Q, Ahmad S, Lin X (2006) A novel mechanism for connexin 26 mutation linked deafness: cell death caused by leaky gap junction hemichannels. Laryngoscope 116:2205–2210

    CAS  PubMed  Google Scholar 

  • Su CC, Li SY, Su MC, Chen WC, Yang JJ (2010) Mutation R184Q of connexin 26 in hearing loss patients has a dominant-negative effect on connexin 26 and connexin 30. Eur J Hum Genet 18:1061–1064

    PubMed Central  CAS  PubMed  Google Scholar 

  • Suaud L, Miller K, Alvey L, Yan W, Robay A, Kebler C, Kreindler JL, Guttentag S, Hubbard MJ, Rubenstein RC (2011) ERp29 regulates DeltaF508 and wild-type cystic fibrosis transmembrane conductance regulator (CFTR) trafficking to the plasma membrane in cystic fibrosis (CF) and non-CF epithelial cells. J Biol Chem 286:21239–21253

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sun J, Ahmad S, Chen S, Tang W, Zhang Y, Chen P, Lin X (2005) Cochlear gap junctions coassembled from Cx26 and 30 show faster intercellular Ca2+ signaling than homomeric counterparts. Am J Physiol Cell Physiol 288:C613–C623

    CAS  PubMed  Google Scholar 

  • Sun Y, Tang W, Chang Q, Wang Y, Kong W, Lin X (2009) Connexin30 null and conditional connexin26 null mice display distinct pattern and time course of cellular degeneration in the cochlea. J Comp Neurol 516:569–579

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sun Y, Hills MD, Ye WG, Tong X, Bai D (2014a) Atrial fibrillation-linked germline GJA5/connexin40 mutants showed an increased hemichannel function. PLoS One 9:e95125

    PubMed Central  PubMed  Google Scholar 

  • Sun Y, Tong X, Chen H, Huang T, Shao Q, Huang W, Laird DW, Bai D (2014b) An atrial-fibrillation-linked connexin40 mutant is retained in the endoplasmic reticulum and impairs the function of atrial gap-junction channels. Dis Model Mech 7:561–569

    PubMed Central  CAS  PubMed  Google Scholar 

  • Taruno A, Matsumoto I, Ma Z, Marambaud P, Foskett JK (2013) How do taste cells lacking synapses mediate neurotransmission? CALHM1, a voltage-gated ATP channel. Bioessays 35:1111–1118

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tattersall D, Scott CA, Gray C, Zicha D, Kelsell DP (2009) EKV mutant connexin 31 associated cell death is mediated by ER stress. Hum Mol Genet 18:4734–4745

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thomas T, Jordan K, Laird DW (2001) Role of cytoskeletal elements in the recruitment of Cx43-GFP and Cx26-YFP into gap junctions. Cell Commun Adhes 8:231–236

    CAS  PubMed  Google Scholar 

  • Thomas T, Telford D, Laird DW (2004) Functional domain mapping and selective trans-dominant effects exhibited by Cx26 disease-causing mutations. J Biol Chem 279:19157–19168

    CAS  PubMed  Google Scholar 

  • Thomas T, Jordan K, Simek J, Shao Q, Jedeszko C, Walton P, Laird DW (2005) Mechanisms of Cx43 and Cx26 transport to the plasma membrane and gap junction regeneration. J Cell Sci 118:4451–4462

    CAS  PubMed  Google Scholar 

  • Thonnissen E, Rabionet R, Arbones ML, Estivill X, Willecke K, Ott T (2002) Human connexin26 (GJB2) deafness mutations affect the function of gap junction channels at different levels of protein expression. Hum Genet 111:190–197

    PubMed  Google Scholar 

  • Tong JJ, Sohn BC, Lam A, Walters DE, Vertel BM, Ebihara L (2013) Properties of two cataract-associated mutations located in the NH2 terminus of connexin 46. Am J Physiol Cell Physiol 304:C823–C832

    PubMed Central  CAS  PubMed  Google Scholar 

  • Uhlenberg B, Schuelke M, Ruschendorf F, Ruf N, Kaindl AM, Henneke M, Thiele H, Stoltenburg-Didinger G, Aksu F, Topaloglu H, Nürnberg P, Hübner C, Weschke B, Gärtner J (2004) Mutations in the gene encoding gap junction protein alpha 12 (connexin 46.6) cause Pelizaeus-Merzbacher-like disease. Am J Hum Genet 75:251–260

    PubMed Central  CAS  PubMed  Google Scholar 

  • Van Norstrand DW, Asimaki A, Rubinos C, Dolmatova E, Srinivas M, Tester DJ, Saffitz JE, Duffy HS, Ackerman MJ (2012) Connexin43 mutation causes heterogeneous gap junction loss and sudden infant death. Circulation 125:474–481

    PubMed Central  PubMed  Google Scholar 

  • VanSlyke JK, Musil LS (2005) Cytosolic stress reduces degradation of connexin43 internalized from the cell surface and enhances gap junction formation and function. Mol Biol Cell 16:5247–5257

    PubMed Central  CAS  PubMed  Google Scholar 

  • VanSlyke JK, Deschenes SM, Musil LS (2000) Intracellular transport, assembly, and degradation of wild-type and disease-linked mutant gap junction proteins. Mol Biol Cell 11:1933–1946

    PubMed Central  CAS  PubMed  Google Scholar 

  • Velasquez S, Eugenin EA (2014) Role of Pannexin-1 hemichannels and purinergic receptors in the pathogenesis of human diseases. Front Physiol 5:96

    PubMed Central  PubMed  Google Scholar 

  • Vozzi C, Dupont E, Coppen SR, Yeh HI, Severs NJ (1999) Chamber-related differences in connexin expression in the human heart. J Mol Cell Cardiol 31:991–1003

    CAS  PubMed  Google Scholar 

  • Vreeburg M, Zwart-Storm EA de, Schouten MI, Nellen RG, Marcus-Soekarman D, Devies M, Geel M van, Steensel MA van (2007) Skin changes in oculo-dento-digital dysplasia are correlated with C-terminal truncations of connexin 43. Am J Med Genet A 143:360–363

  • Wang Y, Chang Q, Tang W, Sun Y, Zhou B, Li H, Lin X (2009) Targeted connexin26 ablation arrests postnatal development of the organ of Corti. Biochem Biophys Res Commun 385:33–37

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wangemann P (2002) K+ cycling and the endocochlear potential. Hear Res 165:1–9

    CAS  PubMed  Google Scholar 

  • White TW (2002) Unique and redundant connexin contributions to lens development. Science 295:319–320

    CAS  PubMed  Google Scholar 

  • White TW, Bruzzone R, Goodenough DA, Paul DL (1992) Mouse Cx50, a functional member of the connexin family of gap junction proteins, is the lens fiber protein MP70. Mol Biol Cell 3:711–720

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xia CH, Cheung D, DeRosa AM, Chang B, Lo WK, White TW, Gong X (2006) Knock-in of alpha3 connexin prevents severe cataracts caused by an alpha8 point mutation. J Cell Sci 119:2138–2144

    PubMed  Google Scholar 

  • Xu J, Nicholson BJ (2013) The role of connexins in ear and skin physiology—functional insights from disease-associated mutations. Biochim Biophys Acta 1828:167–178

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yam GH, Gaplovska-Kysela K, Zuber C, Roth J (2007) Sodium 4-phenylbutyrate acts as a chemical chaperone on misfolded myocilin to rescue cells from endoplasmic reticulum stress and apoptosis. Invest Ophthalmol Vis Sci 48:1683–1690

    PubMed  Google Scholar 

  • Yang JJ, Huang SH, Chou KH, Liao PJ, Su CC, Li SY (2007) Identification of mutations in members of the connexin gene family as a cause of nonsyndromic deafness in Taiwan. Audiol Neurootol 12:198–208

    CAS  PubMed  Google Scholar 

  • Yeager M, Nicholson BJ (1996) Structure of gap junction intercellular channels. Curr Opin Struct Biol 6:183–192

    CAS  PubMed  Google Scholar 

  • Yu Q, Wang Y, Chang Q, Wang J, Gong S, Li H, Lin X (2014) Virally expressed connexin26 restores gap junction function in the cochlea of conditional Gjb2 knockout mice. Gene Ther 21:71–80

    CAS  PubMed  Google Scholar 

  • Yum SW, Kleopa KA, Shumas S, Scherer SS (2002) Diverse trafficking abnormalities of connexin32 mutants causing CMTX. Neurobiol Dis 11:43–52

    CAS  PubMed  Google Scholar 

  • Zelante L, Gasparini P, Estivill X, Melchionda S, D’Agruma L, Govea N, Mila M, Monica MD, Lutfi J, Shohat M, Mansfield E, Delgrosso K, Rappaport E, Surrey S, Fortina P (1997) Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet 6:1605–1609

    CAS  PubMed  Google Scholar 

  • Zhang Y, Hao H (2013) Conserved glycine at position 45 of major cochlear connexins constitutes a vital component of the Ca(2)(+) sensor for gating of gap junction hemichannels. Biochem Biophys Res Commun 436:424–429

    CAS  PubMed  Google Scholar 

  • Zhao HB, Yu N, Fleming CR (2005) Gap junctional hemichannel-mediated ATP release and hearing controls in the inner ear. Proc Natl Acad Sci U S A 102:18724–18729

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou Y, Yang W, Lurtz MM, Ye Y, Huang Y, Lee HW, Chen Y, Louis CF, Yang JJ (2007) Identification of the calmodulin binding domain of connexin 43. J Biol Chem 282:35005–35017

    CAS  PubMed  Google Scholar 

  • Zou J, Salarian M, Chen Y, Veenstra R, Louis CF, Yang JJ (2014) Gap junction regulation by calmodulin. FEBS Lett 588:1430–1438

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors apologize for the vast number of studies that are not cited in this review as this field is large and only examples of key findings are reported here. We also thank Dr. Silvia Penuela for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale W. Laird.

Additional information

This work was supported by the Canadian Institutes of Health Research (74637, 123338) to D.W.L.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelly, J.J., Simek, J. & Laird, D.W. Mechanisms linking connexin mutations to human diseases. Cell Tissue Res 360, 701–721 (2015). https://doi.org/10.1007/s00441-014-2024-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-2024-4

Keywords

Navigation