Skip to main content
Log in

Desmin in muscle and associated diseases: beyond the structural function

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Desmin is a muscle-specific type III intermediate filament essential for proper muscular structure and function. In human, mutations affecting desmin expression or promoting its aggregation lead to skeletal (desmin-related myopathies), or cardiac (desmin-related cardiomyopathy) phenotypes, or both. Patient muscles display intracellular accumulations of misfolded proteins and desmin-positive insoluble granulofilamentous aggregates, leading to a large spectrum of molecular alterations. Increasing evidence shows that desmin function is not limited to the structural and mechanical integrity of cells. This novel perception is strongly supported by the finding that diseases featuring desmin aggregates cannot be easily associated with mechanical defects, but rather involve desmin filaments in a broader spectrum of functions, such as in organelle positioning and integrity and in signaling. Here, we review desmin functions and related diseases affecting striated muscles. We detail emergent cellular functions of desmin based on reported phenotypes in patients and animal models. We discuss known desmin protein partners and propose an overview of the way that this molecular network could serve as a signal transduction platform necessary for proper muscle function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agbulut O, Li Z, Perie S, Ludosky MA, Paulin D, Cartaud J, Butler-Browne G (2001) Lack of desmin results in abortive muscle regeneration and modifications in synaptic structure. Cell Motil Cytoskeleton 49:51–66

    CAS  PubMed  Google Scholar 

  • Allen RE, Rankin LL, Greene EA, Boxhorn LK, Johnson SE, Taylor RG, Pierce PR (1991) Desmin is present in proliferating rat muscle satellite cells but not in bovine muscle satellite cells. J Cell Physiol 149:525–535

    CAS  PubMed  Google Scholar 

  • Al-Qusairi L, Weiss N, Toussaint A, Berbey C, Messaddeq N, Kretz C, Sanoudou D, Beggs AH, Allard B, Mandel JL, Laporte J, Jacquemond V, Buj-Bello A (2009) T-tubule disorganization and defective excitation-contraction coupling in muscle fibers lacking myotubularin lipid phosphatase. Proc Natl Acad Sci U S A 106:18763–18768

    PubMed Central  CAS  PubMed  Google Scholar 

  • Amoasii L, Hnia K, Chicanne G, Brech A, Cowling BS, Muller MM, Schwab Y, Koebel P, Ferry A, Payrastre B, Laporte J (2013) Myotubularin and PtdIns3P remodel the sarcoplasmic reticulum in muscle in vivo. J Cell Sci 126:1806–1819

    CAS  PubMed  Google Scholar 

  • Ariza A, Coll J, Fernandez-Figueras MT, Lopez MD, Mate JL, Garcia O, Fernandez-Vasalo A, Navas-Palacios JJ (1995) Desmin myopathy: a multisystem disorder involving skeletal, cardiac, and smooth muscle. Hum Pathol 26:1032–1037

    CAS  PubMed  Google Scholar 

  • Bandyopadhyay S, Chiang CY, Srivastava J, Gersten M, White S, Bell R, Kurschner C, Martin C, Smoot M, Sahasrabudhe S, Barber DL, Chanda SK, Ideker T (2010) A human MAP kinase interactome. Nat Methods 7:801–805

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bar H, Mucke N, Katus HA, Aebi U, Herrmann H (2007) Assembly defects of desmin disease mutants carrying deletions in the alpha-helical rod domain are rescued by wild type protein. J Struct Biol 158:107–115

    PubMed  Google Scholar 

  • Barbet JP, Thornell LE, Butler-Browne GS (1991) Immunocytochemical characterisation of two generations of fibers during the development of the human quadriceps muscle. Mech Dev 35:3–11

    CAS  PubMed  Google Scholar 

  • Bellin RM, Huiatt TW, Critchley DR, Robson RM (2001) Synemin may function to directly link muscle cell intermediate filaments to both myofibrillar Z-lines and costameres. J Biol Chem 276:32330–32337

    CAS  PubMed  Google Scholar 

  • Benson MA, Tinsley CL, Blake DJ (2004) Myospryn is a novel binding partner for dysbindin in muscle. J Biol Chem 279:10450–10458

    CAS  PubMed  Google Scholar 

  • Bentzinger CF, Wang YX, Rudnicki MA (2012) Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol 4:a008342

    PubMed Central  PubMed  Google Scholar 

  • Bhosle RC, Michele DE, Campbell KP, Li Z, Robson RM (2006) Interactions of intermediate filament protein synemin with dystrophin and utrophin. Biochem Biophys Res Commun 346:768–777

    CAS  PubMed  Google Scholar 

  • Blake DJ, Martin-Rendon E (2002) Intermediate filaments and the function of the dystrophin-protein complex. Trends Cardiovasc Med 12:224–228

    CAS  PubMed  Google Scholar 

  • Boriek AM, Capetanaki Y, Hwang W, Officer T, Badshah M, Rodarte J, Tidball JG (2001) Desmin integrates the three-dimensional mechanical properties of muscles. Am J Physiol Cell Physiol 280:C46–C52

    CAS  PubMed  Google Scholar 

  • Breckler J, Lazarides E (1982) Isolation of a new high molecular weight protein associated with desmin and vimentin filaments from avian embryonic skeletal muscle. J Cell Biol 92:795–806

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brieger A, Adryan B, Wolpert F, Passmann S, Zeuzem S, Trojan J (2010) Cytoskeletal scaffolding proteins interact with Lynch-Syndrome associated mismatch repair protein MLH1. Proteomics 10:3343–3355

    CAS  PubMed  Google Scholar 

  • Buehler MJ (2013) Mechanical players—the role of intermediate filaments in cell mechanics and organization. Biophys J 105:1733–1734

    PubMed Central  CAS  PubMed  Google Scholar 

  • Camara-Pereira ES, Campos LM, Vannier-Santos MA, Mermelstein CS, Costa ML (2009) Distribution of cytoskeletal and adhesion proteins in adult zebrafish skeletal muscle. Histol Histopathol 24:187–196

    CAS  PubMed  Google Scholar 

  • Camargo FD, Green R, Capetanaki Y, Jackson KA, Goodell MA (2003) Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nat Med 9:1520–1527

    CAS  PubMed  Google Scholar 

  • Capetanaki Y, Milner DJ, Weitzer G (1997) Desmin in muscle formation and maintenance: knockouts and consequences. Cell Struct Funct 22:103–116

    CAS  PubMed  Google Scholar 

  • Capetanaki Y, Bloch RJ, Kouloumenta A, Mavroidis M, Psarras S (2007) Muscle intermediate filaments and their links to membranes and membranous organelles. Exp Cell Res 313:2063–2076

    CAS  PubMed  Google Scholar 

  • Carlsson L, Li ZL, Paulin D, Price MG, Breckler J, Robson RM, Wiche G, Thornell LE (2000) Differences in the distribution of synemin, paranemin, and plectin in skeletal muscles of wild-type and desmin knock-out mice. Histochem Cell Biol 114:39–47

    CAS  PubMed  Google Scholar 

  • Cartaud A, Jasmin BJ, Changeux JP, Cartaud J (1995) Direct involvement of a lamin-B-related (54 kDa) protein in the association of intermediate filaments with the postsynaptic membrane of the Torpedo marmorata electrocyte. J Cell Sci 108:153–160

    CAS  PubMed  Google Scholar 

  • Castanon MJ, Walko G, Winter L, Wiche G (2013) Plectin-intermediate filament partnership in skin, skeletal muscle, and peripheral nerve. Histochem Cell Biol 140:33–53

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chang L, Goldman RD (2004) Intermediate filaments mediate cytoskeletal crosstalk. Nat Rev Mol Cell Biol 5:601–613

    CAS  PubMed  Google Scholar 

  • Chang L, Barlan K, Chou YH, Grin B, Lakonishok M, Serpinskaya AS, Shumaker DK, Herrmann H, Gelfand VI, Goldman RD (2009) The dynamic properties of intermediate filaments during organelle transport. J Cell Sci 122:2914–2923

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chung BM, Rotty JD, Coulombe PA (2013) Networking galore: intermediate filaments and cell migration. Curr Opin Cell Biol 25:600–612

    PubMed Central  CAS  PubMed  Google Scholar 

  • Claeys KG, Fardeau M, Schroder R, Suominen T, Tolksdorf K, Behin A, Dubourg O, Eymard B, Maisonobe T, Stojkovic T, Faulkner G, Richard P, Vicart P, Udd B, Voit T, Stoltenburg G (2008) Electron microscopy in myofibrillar myopathies reveals clues to the mutated gene. Neuromuscul Disord 18:656–666

    CAS  PubMed  Google Scholar 

  • Clemen CS, Herrmann H, Strelkov SV, Schroder R (2013) Desminopathies: pathology and mechanisms. Acta Neuropathol 125:47–75

    PubMed Central  CAS  PubMed  Google Scholar 

  • Constantin B (2014) Dystrophin complex functions as a scaffold for signalling proteins. Biochim Biophys Acta 1838:635–642

    CAS  PubMed  Google Scholar 

  • Costa ML, Escaleira R, Cataldo A, Oliveira F, Mermelstein CS (2004) Desmin: molecular interactions and putative functions of the muscle intermediate filament protein. Braz J Med Biol Res 37:1819–1830

    CAS  PubMed  Google Scholar 

  • Costa ML, Escaleira RC, Jazenko F, Mermelstein CS (2008) Cell adhesion in zebrafish myogenesis: distribution of intermediate filaments, microfilaments, intracellular adhesion structures and extracellular matrix. Cell Motil Cytoskeleton 65:801–815

    PubMed  Google Scholar 

  • Coulombe PA, Wong P (2004) Cytoplasmic intermediate filaments revealed as dynamic and multipurpose scaffolds. Nat Cell Biol 6:699–706

    CAS  PubMed  Google Scholar 

  • Dingli F, Parys JB, Loew D, Saule S, Mery L (2012) Vimentin and the K-Ras-induced actin-binding protein control inositol-(1,4,5)-trisphosphate receptor redistribution during MDCK cell differentiation. J Cell Sci 125:5428–5440

    CAS  PubMed  Google Scholar 

  • Dowling JJ, Vreede AP, Low SE, Gibbs EM, Kuwada JY, Bonnemann CG, Feldman EL (2009) Loss of myotubularin function results in T-tubule disorganization in zebrafish and human myotubular myopathy. PLoS Genet 5:e1000372

    PubMed Central  PubMed  Google Scholar 

  • Dunia I, Pieper F, Manenti S, Kemp A van de, Devilliers G, Benedetti EL, Bloemendal H (1990) Plasma membrane-cytoskeleton damage in eye lenses of transgenic mice expressing desmin. Eur J Cell Biol 53:59–74

  • Eriksson JE, He T, Trejo-Skalli AV, Harmala-Brasken AS, Hellman J, Chou YH, Goldman RD (2004) Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments. J Cell Sci 117:919–932

    CAS  PubMed  Google Scholar 

  • Eriksson JE, Dechat T, Grin B, Helfand B, Mendez M, Pallari HM, Goldman RD (2009) Introducing intermediate filaments: from discovery to disease. J Clin Invest 119:1763–1771

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ervasti JM (2003) Costameres: the Achilles' heel of Herculean muscle. J Biol Chem 278:13591–13594

    CAS  PubMed  Google Scholar 

  • Farrell FX, Sax CM, Zehner ZE (1990) A negative element involved in vimentin gene expression. Mol Cell Biol 10:2349–2358

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fischer D, Kley RA, Strach K, Meyer C, Sommer T, Eger K, Rolfs A, Meyer W, Pou A, Pradas J, Heyer CM, Grossmann A, Huebner A, Kress W, Reimann J, Schröder R, Eymard B, Fardeau M, Udd B, Goldfarb L, Vorgerd M, Olivé M (2008) Distinct muscle imaging patterns in myofibrillar myopathies. Neurology 71:758–765

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fountoulakis M, Soumaka E, Rapti K, Mavroidis M, Tsangaris G, Maris A, Weisleder N, Capetanaki Y (2005) Alterations in the heart mitochondrial proteome in a desmin null heart failure model. J Mol Cell Cardiol 38:461–474

    CAS  PubMed  Google Scholar 

  • Garbuglia M, Verzini M, Sorci G, Bianchi R, Giambanco I, Agneletti AL, Donato R (1999) The calcium-modulated proteins, S100A1 and S100B, as potential regulators of the dynamics of type III intermediate filaments. Braz J Med Biol Res 32:1177–1185

    CAS  PubMed  Google Scholar 

  • Gilbert S, Ruel A, Loranger A, Marceau N (2008) Switch in Fas-activated death signaling pathway as result of keratin 8/18-intermediate filament loss. Apoptosis 13:1479–1493

    CAS  PubMed  Google Scholar 

  • Goldfarb LG, Dalakas MC (2009) Tragedy in a heartbeat: malfunctioning desmin causes skeletal and cardiac muscle disease. J Clin Invest 119:1806–1813

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goldfarb LG, Park KY, Cervenakova L, Gorokhova S, Lee HS, Vasconcelos O, Nagle JW, Semino-Mora C, Sivakumar K, Dalakas MC (1998) Missense mutations in desmin associated with familial cardiac and skeletal myopathy. Nat Genet 19:402–403

    CAS  PubMed  Google Scholar 

  • Goldfarb LG, Olivé M, Vicart P, Goebel HH (2008) Intermediate filament diseases: desminopathy. Adv Exp Med Biol 642:131–164

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goldman RD, Cleland MM, Murthy SN, Mahammad S, Kuczmarski ER (2012) Inroads into the structure and function of intermediate filament networks. J Struct Biol 177:14–23

    PubMed Central  CAS  PubMed  Google Scholar 

  • Granger BL, Lazarides E (1980) Synemin: a new high molecular weight protein associated with desmin and vimentin filaments in muscle. Cell 22:727–738

    CAS  PubMed  Google Scholar 

  • Guma FCR, Mello TG, Mermelstein CS, Fortuna VA, Wofchuk ST, Gottfried C, Guaragna RM, Costa ML, Borojevic R (2001) Intermediate filaments modulation in an in vitro model of the hepatic stellate cell activation or conversion into the lipocyte phenotype. Biochem Cell Biol 79:409–417

    CAS  PubMed  Google Scholar 

  • Haubold KW, Allen DL, Capetanaki Y, Leinwand LA (2003) Loss of desmin leads to impaired voluntary wheel running and treadmill exercise performance. J Appl Physiol 95:1617–1622

    CAS  PubMed  Google Scholar 

  • Herrmann H, Fouquet B, Franke WW (1989) Expression of intermediate filament proteins during development of Xenopus laevis. I. cDNA clones encoding different forms of vimentin. Development 105:279–298

    CAS  PubMed  Google Scholar 

  • Herrmann H, Strelkov SV, Burkhard P, Aebi U (2009) Intermediate filaments: primary determinants of cell architecture and plasticity. J Clin Invest 119:1772–1783

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hnia K, Tronchere H, Tomczak KK, Amoasii L, Schultz P, Beggs AH, Payrastre B, Mandel JL, Laporte J (2011) Myotubularin controls desmin intermediate filament architecture and mitochondrial dynamics in human and mouse skeletal muscle. J Clin Invest 121:70–85

    PubMed Central  CAS  PubMed  Google Scholar 

  • Howman EV, Sullivan N, Poon EP, Britton JE, Hilton-Jones D, Davies KE (2003) Syncoilin accumulation in two patients with desmin-related myopathy. Neuromuscul Disord 13:42–48

    PubMed  Google Scholar 

  • Humphries AC, Donnelly SK, Way M (2014) Cdc42 and the Rho GEF intersectin-1 collaborate with Nck to promote N-WASP-dependent actin polymerisation. J Cell Sci 127:673–685

    CAS  PubMed  Google Scholar 

  • Jiao Q, Sanbe A, Zhang X, Liu JP, Minamisawa S (2014) alphaB-Crystallin R120G variant causes cardiac arrhythmias and alterations in the expression of Ca handling proteins and ER stress in mice. Clin Exp Pharmacol Physiol 41:589–599

    CAS  PubMed  Google Scholar 

  • Joanne P, Chourbagi O, Hourde C, Ferry A, Butler-Browne G, Vicart P, Dumonceaux J, Agbulut O (2013) Viral-mediated expression of desmin mutants to create mouse models of myofibrillar myopathy. Skelet Muscle 3:4

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kachinsky AM, Dominov JA, Miller JB (1994) Myogenesis and the intermediate filament protein, nestin. Dev Biol 165:216–228

    CAS  PubMed  Google Scholar 

  • Keating DJ, Chen C, Pritchard MA (2006) Alzheimer's disease and endocytic dysfunction: clues from the Down syndrome-related proteins, DSCR1 and ITSN1. Ageing Res Rev 5:388–401

    CAS  PubMed  Google Scholar 

  • Kielbasa OM, Reynolds JG, Wu CL, Snyder CM, Cho MY, Weiler H, Kandarian S, Naya FJ (2011) Myospryn is a calcineurin-interacting protein that negatively modulates slow-fiber-type transformation and skeletal muscle regeneration. FASEB J 25:2276–2286

    PubMed Central  CAS  PubMed  Google Scholar 

  • Konieczny P, Fuchs P, Reipert S, Kunz WS, Zeold A, Fischer I, Paulin D, Schroder R, Wiche G (2008) Myofiber integrity depends on desmin network targeting to Z-disks and costameres via distinct plectin isoforms. J Cell Biol 181:667–681

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kostareva A, Sjoberg G, Bruton J, Zhang SJ, Balogh J, Gudkova A, Hedberg B, Edstrom L, Westerblad H, Sejersen T (2008) Mice expressing L345P mutant desmin exhibit morphological and functional changes of skeletal and cardiac mitochondria. J Muscle Res Cell Motil 29:25–36

    CAS  PubMed  Google Scholar 

  • Kouloumenta A, Mavroidis M, Capetanaki Y (2007) Proper perinuclear localization of the TRIM-like protein myospryn requires its binding partner desmin. J Biol Chem 282:35211–35221

    CAS  PubMed  Google Scholar 

  • Kuisk IR, Li H, Tran D, Capetanaki Y (1996) A single MEF2 site governs desmin transcription in both heart and skeletal muscle during mouse embryogenesis. Dev Biol 174:1–13

    CAS  PubMed  Google Scholar 

  • Kumar A, Khandelwal N, Malya R, Reid MB, Boriek AM (2004) Loss of dystrophin causes aberrant mechanotransduction in skeletal muscle fibers. FASEB J 18:102–113

    CAS  PubMed  Google Scholar 

  • Lazarides E (1982) Intermediate filaments: a chemically heterogeneous, developmentally regulated class of proteins. Annu Rev Biochem 51:219–250

    CAS  PubMed  Google Scholar 

  • Lazarides E, Hubbard BD (1976) Immunological characterization of the subunit of the 100 Å filaments from muscle cells. Proc Natl Acad Sci U S A 73:4344–4348

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li D, Tapscoft T, Gonzalez O, Burch PE, Quinones MA, Zoghbi WA, Hill R, Bachinski LL, Mann DL, Roberts R (1999) Desmin mutation responsible for idiopathic dilated cardiomyopathy. Circulation 100:461–464

    CAS  PubMed  Google Scholar 

  • Li H, Capetanaki Y (1993) Regulation of the mouse desmin gene: transactivated by MyoD, myogenin, MRF4 and Myf5. Nucleic Acids Res 21:335–343

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li H, Choudhary SK, Milner DJ, Munir MI, Kuisk IR, Capetanaki Y (1994) Inhibition of desmin expression blocks myoblast fusion and interferes with the myogenic regulators MyoD and myogenin. J Cell Biol 124:827–841

    CAS  PubMed  Google Scholar 

  • Li M, Andersson-Lendahl M, Sejersen T, Arner A (2013) Knockdown of desmin in zebrafish larvae affects interfilament spacing and mechanical properties of skeletal muscle. J Gen Physiol 141:335–345

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li Z, Mericskay M, Agbulut O, Butler-Browne G, Carlsson L, Thornell LE, Babinet C, Paulin D (1997) Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle. J Cell Biol 139:129–144

    PubMed Central  CAS  PubMed  Google Scholar 

  • Linden M, Li Z, Paulin D, Gotow T, Leterrier JF (2001) Effects of desmin gene knockout on mice heart mitochondria. J Bioenerg Biomembr 33:333–341

    CAS  PubMed  Google Scholar 

  • Liu J, Chen Q, Huang W, Horak KM, Zheng H, Mestril R, Wang X (2006) Impairment of the ubiquitin-proteasome system in desminopathy mouse hearts. FASEB J 20:362–364

    CAS  PubMed  Google Scholar 

  • Loh SH, Chan WT, Gong Z, Lim TM, Chua KL (2000) Characterization of a zebrafish (Danio rerio) desmin cDNA: an early molecular marker of myogenesis. Differentiation 65:247–254

    CAS  PubMed  Google Scholar 

  • Lovering RM, O'Neill A, Muriel JM, Prosser BL, Strong J, Bloch RJ (2011) Physiology, structure, and susceptibility to injury of skeletal muscle in mice lacking keratin 19-based and desmin-based intermediate filaments. Am J Physiol Cell Physiol 300:C803–C813

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mavroidis M, Panagopoulou P, Kostavasili I, Weisleder N, Capetanaki Y (2008) A missense mutation in desmin tail domain linked to human dilated cardiomyopathy promotes cleavage of the head domain and abolishes its Z-disc localization. FASEB J 22:3318–3327

    PubMed Central  CAS  PubMed  Google Scholar 

  • Meyer GA, Lieber RL (2012) Skeletal muscle fibrosis develops in response to desmin deletion. Am J Physiol Cell Physiol 302:C1609–C1620

    PubMed Central  CAS  PubMed  Google Scholar 

  • Milner DJ, Weitzer G, Tran D, Bradley A, Capetanaki Y (1996) Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. J Cell Biol 134:1255–1270

    CAS  PubMed  Google Scholar 

  • Milner DJ, Mavroidis M, Weisleder N, Capetanaki Y (2000) Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J Cell Biol 150:1283–1298

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mizuno Y, Thompson TG, Guyon JR, Lidov HG, Brosius M, Imamura M, Ozawa E, Watkins SC, Kunkel LM (2001) Desmuslin, an intermediate filament protein that interacts with alpha-dystrobrevin and desmin. Proc Natl Acad Sci U S A 98:6156–6161

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mohamed JS, Boriek AM (2012) Loss of desmin triggers mechanosensitivity and up-regulation of Ankrd1 expression through Akt-NF-kappaB signaling pathway in smooth muscle cells. FASEB J 26:757–765

    CAS  PubMed  Google Scholar 

  • Moorwood C (2008) Syncoilin, an intermediate filament-like protein linked to the dystrophin associated protein complex in skeletal muscle. Cell Mol Life Sci 65:2957–2963

    CAS  PubMed  Google Scholar 

  • Most P, Remppis A, Pleger ST, Katus HA, Koch WJ (2007) S100A1: a novel inotropic regulator of cardiac performance. Transition from molecular physiology to pathophysiological relevance. Am J Physiol Regul Integr Comp Physiol 293:R568–R577

    CAS  PubMed  Google Scholar 

  • Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q (2008) GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol 9 (Suppl 1):S4

    PubMed Central  PubMed  Google Scholar 

  • Munoz-Marmol AM, Strasser G, Isamat M, Coulombe PA, Yang Y, Roca X, Vela E, Mate JL, Coll J, Fernandez-Figueras MT, Navas-Palacios JJ, Ariza A, Fuchs E (1998) A dysfunctional desmin mutation in a patient with severe generalized myopathy. Proc Natl Acad Sci U S A 95:11312–11317

    PubMed Central  CAS  PubMed  Google Scholar 

  • Newey SE, Howman EV, Ponting CP, Benson MA, Nawrotzki R, Loh NY, Davies KE, Blake DJ (2001) Syncoilin, a novel member of the intermediate filament superfamily that interacts with alpha-dystrobrevin in skeletal muscle. J Biol Chem 276:6645–6655

    CAS  PubMed  Google Scholar 

  • Okur MN, Russo A, O'Bryan JP (2014) Receptor tyrosine kinase ubiquitylation involves the dynamic regulation of Cbl-Spry2 by intersectin 1 and the Shp2 tyrosine phosphatase. Mol Cell Biol 34:271–279

    PubMed Central  PubMed  Google Scholar 

  • Olivé M, Goldfarb L, Moreno D, Laforet E, Dagvadorj A, Sambuughin N, Martínez-Matos JA, Martínez F, Alió J, Farrero E, Vicart P, Ferrer I (2004) Desmin-related myopathy: clinical, electrophysiological, radiological, neuropathological and genetic studies. J Neurol Sci 219:125–137

    PubMed  Google Scholar 

  • O'Neill A, Williams MW, Resneck WG, Milner DJ, Capetanaki Y, Bloch RJ (2002) Sarcolemmal organization in skeletal muscle lacking desmin: evidence for cytokeratins associated with the membrane skeleton at costameres. Mol Biol Cell 13:2347–2359

    PubMed Central  PubMed  Google Scholar 

  • Piñol-Ripoll G, Shatunov A, Cabello A, Larrode P, Puerta I de la, Pelegrín J, Ramos FJ, Olivé M, Goldfarb LG (2009) Severe infantile-onset cardiomyopathy associated with a homozygous deletion in desmin. Neuromuscul Disord 19:418–422

  • Poon E, Howman EV, Newey SE, Davies KE (2002) Association of syncoilin and desmin: linking intermediate filament proteins to the dystrophin-associated protein complex. J Biol Chem 277:3433–3439

    CAS  PubMed  Google Scholar 

  • Prosser BL, Wright NT, Hernandez-Ochoa EO, Varney KM, Liu Y, Olojo RO, Zimmer DB, Weber DJ, Schneider MF (2008) S100A1 binds to the calmodulin-binding site of ryanodine receptor and modulates skeletal muscle excitation-contraction coupling. J Biol Chem 283:5046–5057

    CAS  PubMed  Google Scholar 

  • Prosser BL, Hernandez-Ochoa EO, Schneider MF (2011) S100A1 and calmodulin regulation of ryanodine receptor in striated muscle. Cell Calcium 50:323–331

    PubMed Central  CAS  PubMed  Google Scholar 

  • Raats JM, Schaart G, Henderik JB, Kemp A van der, Dunia I, Benedetti EL, Pieper FR, Ramaekers FC, Bloemendal H (1996) Muscle-specific expression of a dominant negative desmin mutant in transgenic mice. Eur J Cell Biol 71:221–236

  • Reimann J, Kunz WS, Vielhaber S, Kappes-Horn K, Schroder R (2003) Mitochondrial dysfunction in myofibrillar myopathy. Neuropathol Appl Neurobiol 29:45–51

    PubMed  Google Scholar 

  • Remppis A, Most P, Loffler E, Ehlermann P, Bernotat J, Pleger S, Borries M, Reppel M, Fischer J, Koch WJ, Smith G, Katus HA (2002) The small EF-hand Ca2+ binding protein S100A1 increases contractility and Ca2+ cycling in rat cardiac myocytes. Basic Res Cardiol 97 (Suppl 1):I56–I62

    PubMed  Google Scholar 

  • Reynolds JG, McCalmon SA, Tomczyk T, Naya FJ (2007) Identification and mapping of protein kinase A binding sites in the costameric protein myospryn. Biochim Biophys Acta 1773:891–902

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reynolds JG, McCalmon SA, Donaghey JA, Naya FJ (2008) Deregulated protein kinase A signaling and myospryn expression in muscular dystrophy. J Biol Chem 283:8070–8074

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rybakova IN, Patel JR, Ervasti JM (2000) The dystrophin complex forms a mechanically strong link between the sarcolemma and costameric actin. J Cell Biol 150:1209–1214

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sam M, Shah S, Friden J, Milner DJ, Capetanaki Y, Lieber RL (2000) Desmin knockout muscles generate lower stress and are less vulnerable to injury compared with wild-type muscles. Am J Physiol Cell Physiol 279:C1116–C1122

    CAS  PubMed  Google Scholar 

  • Schofield AV, Bernard O (2013) Rho-associated coiled-coil kinase (ROCK) signaling and disease. Crit Rev Biochem Mol Biol 48:301–316

    CAS  PubMed  Google Scholar 

  • Schopferer M, Bar H, Hochstein B, Sharma S, Mucke N, Herrmann H, Willenbacher N (2009) Desmin and vimentin intermediate filament networks: their viscoelastic properties investigated by mechanical rheometry. J Mol Biol 388:133–143

    CAS  PubMed  Google Scholar 

  • Schultheiss T, Lin ZX, Ishikawa H, Zamir I, Stoeckert CJ, Holtzer H (1991) Desmin/vimentin intermediate filaments are dispensable for many aspects of myogenesis. J Cell Biol 114:953–966

    CAS  PubMed  Google Scholar 

  • Snider NT, Omary MB (2014) Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat Rev Mol Cell Biol 15:163–177

    PubMed Central  CAS  PubMed  Google Scholar 

  • Spaendonck-Zwarts KY van, Hessem L van, Jongbloed JD, Walle HE de, Capetanaki Y, Kooi AJ van der, Langen IM van, Berg MP van den, Tintelen JP van (2011) Desmin-related myopathy. Clin Genet 80:354–366

  • Sprinkart AM, Block W, Träber F, Meyer R, Paulin D, Clemen CS, Schröder R, Gieseke J, Schild H, Thomas D (2012) Characterization of the failing murine heart in a desmin knock-out model using a clinical 3 T MRI scanner. Int J Cardiovasc Imaging 28:1699–1705

    CAS  PubMed  Google Scholar 

  • Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34:D535–D539

    PubMed Central  CAS  PubMed  Google Scholar 

  • Steinert PM, Chou YH, Prahlad V, Parry DA, Marekov LN, Wu KC, Jang SI, Goldman RD (1999) A high molecular weight intermediate filament-associated protein in BHK-21 cells is nestin, a type VI intermediate filament protein. Limited co-assembly in vitro to form heteropolymers with type III vimentin and type IV alpha-internexin. J Biol Chem 274:9881–9890

    CAS  PubMed  Google Scholar 

  • Stone MR, O'Neill A, Catino D, Bloch RJ (2005) Specific interaction of the actin-binding domain of dystrophin with intermediate filaments containing keratin 19. Mol Biol Cell 16:4280–4293

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stone MR, O'Neill A, Lovering RM, Strong J, Resneck WG, Reed PW, Toivola DM, Ursitti JA, Omary MB, Bloch RJ (2007) Absence of keratin 19 in mice causes skeletal myopathy with mitochondrial and sarcolemmal reorganization. J Cell Sci 120:3999–4008

    CAS  PubMed  Google Scholar 

  • Sun N, Critchley DR, Paulin D, Li Z, Robson RM (2008) Human alpha-synemin interacts directly with vinculin and metavinculin. Biochem J 409:657–667

    CAS  PubMed  Google Scholar 

  • Taylor GS, Maehama T, Dixon JE (2000) Myotubularin, a protein tyrosine phosphatase mutated in myotubular myopathy, dephosphorylates the lipid second messenger, phosphatidylinositol 3-phosphate. Proc Natl Acad Sci U S A 97:8910–8915

    PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor MR, Slavov D, Ku L, Di Lenarda A, Sinagra G, Carniel E, Haubold K, Boucek MM, Ferguson D, Graw SL, Zhu X, Cavanaugh J, Sucharov CC, Long CS, Bristow MR, Lavori P, Mestroni L, Familial Cardiomyopathy Registry, BEST (Beta-Blocker Evaluation of Survival Trial) DNA Bank (2007) Prevalence of desmin mutations in dilated cardiomyopathy. Circulation 115:1244–1251

    CAS  PubMed  Google Scholar 

  • Thornell L, Carlsson L, Li Z, Mericskay M, Paulin D (1997) Null mutation in the desmin gene gives rise to a cardiomyopathy. J Mol Cell Cardiol 29:2107–2124

    CAS  PubMed  Google Scholar 

  • Tolstonog GV, Sabasch M, Traub P (2002) Cytoplasmic intermediate filaments are stably associated with nuclear matrices and potentially modulate their DNA-binding function. DNA Cell Biol 21:213–239

    CAS  PubMed  Google Scholar 

  • Tsoupri E, Capetanaki Y (2013) Muyospryn: a multifunctional desmin-associated protein. Histochem Cell Biol 140:55–63

    CAS  PubMed  Google Scholar 

  • Tsyba L, Nikolaienko O, Dergai O, Dergai M, Novokhatska O, Skrypkina I, Rynditch A (2011) Intersectin multidomain adaptor proteins: regulation of functional diversity. Gene 473:67–75

    CAS  PubMed  Google Scholar 

  • Ursitti JA, Lee PC, Resneck WG, McNally MM, Bowman AL, O'Neill A, Stone MR, Bloch RJ (2004) Cloning and characterization of cytokeratins 8 and 19 in adult rat striated muscle. Interaction with the dystrophin glycoprotein complex. J Biol Chem 279:41830–41838

    CAS  PubMed  Google Scholar 

  • Vogel B, Meder B, Just S, Laufer C, Berger I, Weber S, Katus HA, Rottbauer W (2009) In-vivo characterization of human dilated cardiomyopathy genes in zebrafish. Biochem Biophys Res Commun 390:516–522

    CAS  PubMed  Google Scholar 

  • Volkers M, Rohde D, Goodman C, Most P (2010) S100A1: a regulator of striated muscle sarcoplasmic reticulum Ca2+ handling, sarcomeric, and mitochondrial function. J Biomed Biotechnol 2010:178614

    PubMed Central  PubMed  Google Scholar 

  • Walter MC, Reilich P, Huebner A, Fischer D, Schroder R, Vorgerd M, Kress W, Born C, Schoser BG, Krause KH, Klutzny U, Bulst S, Frey JR, Lochmüller H (2007) Scapuloperoneal syndrome type Kaeser and a wide phenotypic spectrum of adult-onset, dominant myopathies are associated with the desmin mutation R350P. Brain 130:1485–1496

    CAS  PubMed  Google Scholar 

  • Wang X, Osinska H, Dorn GW 2nd, Nieman M, Lorenz JN, Gerdes AM, Witt S, Kimball T, Gulick J, Robbins J (2001) Mouse model of desmin-related cardiomyopathy. Circulation 103:2402–2407

    CAS  PubMed  Google Scholar 

  • Weisleder N, Soumaka E, Abbasi S, Taegtmeyer H, Capetanaki Y (2004a) Cardiomyocyte-specific desmin rescue of desmin null cardiomyopathy excludes vascular involvement. J Mol Cell Cardiol 36:121–128

    CAS  PubMed  Google Scholar 

  • Weisleder N, Taffet GE, Capetanaki Y (2004b) Bcl-2 overexpression corrects mitochondrial defects and ameliorates inherited desmin null cardiomyopathy. Proc Natl Acad Sci U S A 101:769–774

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weitzer G, Milner DJ, Kim JU, Bradley A, Capetanaki Y (1995) Cytoskeletal control of myogenesis: a desmin null mutation blocks the myogenic pathway during embryonic stem cell differentiation. Dev Biol 172:422–439

    CAS  PubMed  Google Scholar 

  • Windoffer R, Beil M, Magin TM, Leube RE (2011) Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia. J Cell Biol 194:669–678

    PubMed Central  CAS  PubMed  Google Scholar 

  • Winter DL, Paulin D, Mericskay M, Li Z (2014) Posttranslational modifications of desmin and their implication in biological processes and pathologies. Histochem Cell Biol 141:1–16

    CAS  PubMed  Google Scholar 

  • Winter L, Wiche G (2013) The many faces of plectin and plectinopathies: pathology and mechanisms. Acta Neuropathol 125:77–93

    CAS  PubMed  Google Scholar 

  • Wong KA, Wilson J, Russo A, Wang L, Okur MN, Wang X, Martin NP, Scappini E, Carnegie GK, O'Bryan JP (2012) Intersectin (ITSN) family of scaffolds function as molecular hubs in protein interaction networks. PLoS One 7:e36023

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamada K, Nomura N, Yamano A, Yamada Y, Wakamatsu N (2012) Identification and characterization of splicing variants of PLEKHA5 (Plekha5) during brain development. Gene 492:270–275

    CAS  PubMed  Google Scholar 

  • Zheng Q, Su H, Ranek MJ, Wang X (2011) Autophagy and p62 in cardiac proteinopathy. Circ Res 109:296–308

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zou Y, Zhong W (2012) A likely role for a novel PH-domain containing protein, PEPP2, in connecting membrane and cytoskeleton. Biocell 36:127–132

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Pr. Denise Paulin for her helpful suggestions and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karim Hnia or Jocelyn Laporte.

Additional information

Karim Hnia and Caroline Ramspacher contributed equally to this work.

This work is supported by INSERM, CNRS, UDS (University of Strasbourg) and AFM (Association Française Contre la Myopathy).

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hnia, K., Ramspacher, C., Vermot, J. et al. Desmin in muscle and associated diseases: beyond the structural function. Cell Tissue Res 360, 591–608 (2015). https://doi.org/10.1007/s00441-014-2016-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-2016-4

Keywords

Navigation