Skip to main content

Advertisement

Log in

Distal-less homeobox 2 promotes the osteogenic differentiation potential of stem cells from apical papilla

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Dental tissue-derived mesenchymal stem cells (MSCs) are a reliable cell source for dental tissue regeneration. However, the molecular mechanisms underlying the directed differentiation of MSCs remain unclear; thus, their use is limited. The histone demethylase, lysine (K)-specific demethylase 4B (KDM4B), plays critical roles in the osteogenic commitment of MSCs by up-regulating distal-less homeobox 2 (DLX2) expression. The DLX2 gene is highly expressed in dental tissue-derived MSCs but the roles of DLX2 in osteogenesis are unclear. Here, we investigate DLX2 function in stem cells from apical papilla (SCAPs). We found that, in vitro, DLX2 expression was up-regulated in SCAPs by adding BMP4 and by inducing osteogenesis. The knock-down of DLX2 in SCAPs decreased alkaline phosphatase (ALP) activity and mineralization. DLX2 depletion affected the mRNA expression of ALP, bone sialoprotein (BSP) and osteocalcin (OCN) and inhibited SCAP osteogenic differentiation in vitro. Over-expression of DLX2 enhanced ALP activity, mineralization and the expression of ALP, BSP and OCN in vitro. In addition, transplant experiments in nude mice confirmed that SCAP osteogenesis was triggered when DLX2 was activated. Furthermore, DLX2 expression led to the expression of the key transcription factor, osterix (OSX) but not to the expression of runt-related transcription factor 2 (RUNX2). Taken together, these results indicate that DLX2 is stimulated by BMP signaling and enhances SCAP osteogenic differentiation by up-regulating OSX. Thus, the activation of DLX2 signaling might improve tissue regeneration mediated by MSCs of dental origin. These results provide insight into the mechanism underlying the directed differentiation of MSCs of dental origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acampora D, Merlo GR, Paleari L, Zerega B, Postiglione MP, Mantero S, Bober E, Barbieri O, Simeone A, Levi G (1999) Craniofacial, vestibular and bone defects in mice lacking the Distal-less-related gene Dlx5. Development 126:3795–3809

    CAS  PubMed  Google Scholar 

  • Arthur A, Rychkov G, Shi S, Koblar SA, Gronthos S (2008) Adult human dental pulp stem cells differentiate towards functionally active neurons under appropriate environmental cues. Stem Cells 26:1787–1795

    Article  CAS  PubMed  Google Scholar 

  • Baek WY, Lee MA, Jung JW, Kim SY, Akiyama H, de Crombrugghe B, Kim JE (2009) Positive regulation of adult bone formation by osteoblast-specific transcription factor osterix. J Bone Miner Res 24:1055–1065

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213:341–347

    Article  CAS  PubMed  Google Scholar 

  • Celil AB, Campbell PG (2005) BMP-2 and insulin-like growth factor-I mediate Osterix (Osx) expression in human mesenchymal stem cells via the MAPK and protein kinase D signaling pathways. J Biol Chem 280:31353–31359

    Article  CAS  PubMed  Google Scholar 

  • Chang J, Sonoyama W, Wang Z, Jin Q, Zhang C, Krebsbach PH, Giannobile W, Shi S, Wang CY (2007) Noncanonical Wnt-4 signaling enhances bone regeneration of mesenchymal stem cells in craniofacial defects through activation of p38 MAPK. J Biol Chem 282:30938–30948

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Zhao M, Mundy GR (2004) Bone morphogenetic proteins. Growth Factors 22:233–241

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Gluhak-Heinrich J, Wang YH, Wu YM, Chuang HH, Chen L, Yuan GH, Dong J, Gay I, MacDougall M (2009) Runx2, osx, and dspp in tooth development. J Dent Res 88:904–909

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • da Cunha JM, da Costa-Neves A, Kerkis I, da Silva MC (2013) Pluripotent stem cell transcription factors during human odontogenesis. Cell Tissue Res 353:435–441

    Article  PubMed  Google Scholar 

  • Dai J, Kuang Y, Fang B, Gong H, Lu S, Mou Z, Sun H, Dong Y, Lu J, Zhang W, Zhang J, Wang Z, Wang X, Shen G (2013) The effect of overexpression of Dlx2 on the migration, proliferation and osteogenic differentiation of cranial neural crest stem cells. Biomaterials 34:1898–1910

    Article  CAS  PubMed  Google Scholar 

  • Du J, Ma Y, Ma P, Wang S, Fan Z (2013) Demethylation of epiregulin gene by histone demethylase FBXL11 and BCL6 corepressor inhibits osteo/dentinogenic differentiation. Stem Cells 31:126–136

    Article  CAS  PubMed  Google Scholar 

  • Fan Z, Yamaza T, Lee JS, Yu J, Wang SL, Fan G, Shi S, Wang CY (2009) BCOR regulates mesenchymal stem cell function by epigenetic mechanisms. Nat Cell Biol 11:1002–1009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97:13625–13630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harris SE, Guo D, Harris MA, Krishnaswamy A, Lichtler A (2003) Transcriptional regulation of BMP-2 activated genes in osteoblasts using gene expression microarray analysis: role of Dlx2 and Dlx5 transcription factors. Front Biosci 8:s1249–s1265

    Article  CAS  PubMed  Google Scholar 

  • Hassan MQ, Javed A, Morasso MI, Karlin J, Montecino M, van Wijnen AJ, Stein GS, Stein JL, Lian JB (2004) Dlx3 transcriptional regulation of osteoblast differentiation: temporal recruitment of Msx2, Dlx3, and Dlx5 homeodomain proteins to chromatin of the osteocalcin gene. Mol Cell Biol 24:9248–9261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hassan MQ, Tare RS, Lee SH, Mandeville M, Morasso MI, Javed A, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2006) BMP2 commitment to the osteogenic lineage involves activation of Runx2 by DLX3 and a homeodomain transcriptional network. J Biol Chem 281:40515–40526

    Article  CAS  PubMed  Google Scholar 

  • Holleville N, Matéos S, Bontoux M, Bollerot K, Monsoro-Burq AH (2007) Dlx5 drives Runx2 expression and osteogenic differentiation in developing cranial suture mesenchyme. Dev Biol 304:860–874

    Article  CAS  PubMed  Google Scholar 

  • Jahagirdar BN, Verfaillie CM (2005) Multipotent adult progenitor cell and stem cell plasticity. Stem Cell Rev 1:53–59

    Article  CAS  PubMed  Google Scholar 

  • Jang WG, Kim EJ, Lee KN, Son HJ, Koh JT (2011) AMP-activated protein kinase (AMPK) positively regulates osteoblast differentiation via induction of Dlx5-dependent Runx2 expression in MC3T3E1 cells. Biochem Biophys Res Commun 404:1004–1009

    Article  CAS  PubMed  Google Scholar 

  • Jiang Q, Du J, Yin X, Shan Z, Ma Y, Ma P, Du J, Fan Z (2013) Shh signaling, negatively regulated by BMP signaling, inhibits the osteo/dentinogenic differentiation potentials of mesenchymal stem cells from apical papilla. Mol Cell Biochem 383:85–93

    Article  CAS  PubMed  Google Scholar 

  • Kaback LA, Soung do Y, Naik A, Smith N, Schwarz EM, O’Keefe RJ, Drissi H (2008) Osterix/Sp7 regulates mesenchymal stem cell mediated endochondral ossification. J Cell Physiol 214:173–182

    Article  CAS  PubMed  Google Scholar 

  • Karsenty G, Wagner EF (2002) Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2:389–406

    Article  CAS  PubMed  Google Scholar 

  • Komori T (2006) Regulation of osteoblast differentiation by transcription factors. J Cell Biochem 99:1233–1239

    Article  CAS  PubMed  Google Scholar 

  • Kraus P, Lufkin T (2006) Dlx homeobox gene control of mammalian limb and craniofacial development. Am J Med Genet A 140:1366–1374

    Article  PubMed  Google Scholar 

  • Lee MH, Kim YJ, Kim HJ, Park HD, Kang AR, Kyung HM, Sung JH, Wozney JM, Kim HJ, Ryoo HM (2003a) BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-beta 1 opposes the BMP-2-induced osteoblast differentiation by suppression of Dlx5 expression. J Biol Chem 278:34387–34394

    Article  CAS  PubMed  Google Scholar 

  • Lee MH, Kwon TG, Park HS, Wozney JM, Ryoo HM (2003b) BMP-2-induced Osterix expression is mediated by Dlx5 but is independent of Runx2. Biochem Biophys Res Commun 309:689–694

    Article  CAS  PubMed  Google Scholar 

  • Li H, Marijanovic I, Kronenberg MS, Erceg I, Stover ML, Velonis D, Mina M, Heinrich JG, Harris SE, Upholt WB, Kalajzic I, Lichtler AC (2008) Expression and function of Dlx genes in the osteoblast lineage. Dev Biol 316:458–470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li X, Yang G, Fan M (2012) Effects of homeobox gene distal-less 3 on proliferation and odontoblastic differentiation of human dental pulp cells. J Endod 38:1504–1510

    Article  PubMed  Google Scholar 

  • Lian JB, Stein GS, Javed A, van Wijnen AJ, Stein JL, Montecino M, Hassan MQ, Gaur T, Lengner CJ, Young DW (2006) Networks and hubs for the transcriptional control of osteoblastogenesis. Rev Endocr Metab Disord 7:1–16

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zheng Y, Ding G, Fang D, Zhang C, Bartold PM, Gronthos S, Shi S, Wang S (2008) Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine. Stem Cells 26:1065–1073

    Article  PubMed Central  PubMed  Google Scholar 

  • Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 100:5807–5812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miyama K, Yamada G, Yamamoto TS, Takagi C, Miyado K, Sakai M, Ueno N, Shibuya H (1999) A BMP-inducible gene, dlx5, regulates osteoblast differentiation and mesoderm induction. Dev Biol 208:123–133

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29

    Article  CAS  PubMed  Google Scholar 

  • Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells 25:2896–2902

    Article  PubMed  Google Scholar 

  • Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155

    Article  CAS  PubMed  Google Scholar 

  • Shi S, Wang CY (2004) Bone marrow stromal stem cells for repairing the skeleton. Biotechnol Genet Eng Rev 21:133–143

    Article  PubMed  Google Scholar 

  • Shi S, Gronthos S, Chen S, Reddi A, Counter CM, Robey PG, Wang CY (2002) Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Nat Biotechnol 20:587–591

    Article  CAS  PubMed  Google Scholar 

  • Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, Liu H, Gronthos S, Wang CY, Wang S, Shi S (2006) Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS ONE 1:e79

    Article  PubMed Central  PubMed  Google Scholar 

  • Takeda S, Bonnamy JP, Owen MJ, Ducy P, Karsenty G (2001) Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Genes Dev 15:467–481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ulsamer A, Ortuno MJ, Ruiz S, Susperregui AR, Osses N, Rosa JL, Ventura F (2008) BMP-2 induces Osterix expression through up-regulation of Dlx5 and its phosphorylation by p38. J Biol Chem 283:3816–3826

    Article  CAS  PubMed  Google Scholar 

  • Viale-Bouroncle S, Felthaus O, Schmalz G, Brockhoff G, Reichert TE, Morsczeck C (2012) The transcription factor DLX3 regulates the osteogenic differentiation of human dental follicle precursor cells. Stem Cells Dev 21:1936–1947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ye L, Fan Z, Yu B, Chang J, Al Hezaimi K, Zhou X, Park NH, Wang CY (2012) Histone Demethylases KDM4B and KDM6B Promote Osteogenic Differentiation of Human MSCs. Cell Stem Cell 11:50–61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu S, Long J, Yu J, Du J, Ma P, Ma Y, Yang D, Fan Z (2013) Analysis of differentiation potentials and gene expression profiles of mesenchymal stem cells derived from periodontal ligament and Wharton’s jelly of the umbilical cord. Cells Tissues Organs 197:209–223

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhu J, Valverde P, Li L, Pageau S, Tu Q, Nishimura R, Yoneda T, Yang P, Zheng W, Ma W, Chen J (2008) Phenotypic analysis of Dlx5 overexpression in post-natal bone. J Dent Res 87:45–50

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Sciences Foundation of China (Grant No. 30872895 and 81300841); by a Key Technology Project Grant for Science and Technology, Department of Hunan Province (Grant No. 2008FJ2011); by the Nature Sciences Foundation of Hunan Province (Grant No. S2013J504B); and by a Project Grant for Science and Technology, Department of Hunan Province (Grant No. 2013SK5075).

Disclosure of potential conflicts of interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangui Tang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

DLX2 expression was not changed at 1, 7 and 21 days after culturing SCAPs in osteogenic-inducing medium compared to expression in SCAPs cultured in normal medium. Real-time RT-PCR results show DLX2 mRNA expression levels. GAPDH was used as an internal control. Student’s t-test was performed to determine statistical significance. All error bars represent SD (n = 3). NS no significant difference. Normal normal culture medium; Induced osteogenic-inducing medium. (JPEG 16 kb)

High Resolution Image (TIFF 916 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, B., Liu, O., Fang, X. et al. Distal-less homeobox 2 promotes the osteogenic differentiation potential of stem cells from apical papilla. Cell Tissue Res 357, 133–143 (2014). https://doi.org/10.1007/s00441-014-1833-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1833-9

Keywords

Navigation