Skip to main content
Log in

MicroRNAs and human diseases: diagnostic and therapeutic potential

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are endogenous, non-coding small RNAs that regulate gene expression at the post-transcriptional level. Recent studies have shown that miRNAs are aberrantly expressed in various human diseases, ranging from cancer to cardiovascular hypertrophy. The expression profiles of the miRNAs clearly differentiate the normal from the pathological state and thus their potential as novel biomarkers in the diagnosis and prognosis of several human diseases is immense. Emerging data on the role of miRNAs in the pathogenesis of various human diseases have paved the way to test their ability to act as novel therapeutic tools. In the present review, we will explore the current knowledge about the role of miRNAs in various human diseases. In addition, we will focus on the emerging evidences demonstrating the potential of miRNAs as novel biomarkers and the strategies to use them as therapeutic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe M, Bonini NM (2013) MicroRNAs and neurodegeneration: role and impact. Trends Cell Biol 23:30–36

    PubMed  CAS  PubMed Central  Google Scholar 

  • Abraham WT, Gilbert EM, Lowes BD, Minobe WA, Larrabee P, Roden RL, Dutcher D, Sederberg J, Lindenfeld JA, Wolfel EE, Shakar SF, Ferguson D, Volkman K, Linseman JV, Quaife RA, Robertson AD, Bristow MR (2002) Coordinate changes in Myosin heavy chain isoform gene expression are selectively associated with alterations in dilated cardiomyopathy phenotype. Mol Med 8:750–760

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E (2011) Alzheimer’s disease. Lancet 377:1019–1031

    PubMed  Google Scholar 

  • Baroukh N, Ravier MA, Loder MK, Hill EV, Bounacer A, Scharfmann R, Rutter GA, Van Obberghen E (2007) MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J Biol Chem 282:19575–19588

    PubMed  CAS  Google Scholar 

  • Benoit MP, Imbert L, Palencia A, Perard J, Ebel C, Boisbouvier J, Plevin MJ (2013) The RNA-binding region of human TRBP interacts with microRNA precursors through two independent domains. Nucleic Acids Res 41:4241–4252

    PubMed  CAS  PubMed Central  Google Scholar 

  • Boehm M, Slack FJ (2006) MicroRNA control of lifespan and metabolism. Cell Cycle 5:837–840

    PubMed  CAS  Google Scholar 

  • Bohnsack MT, Czaplinski K, Gorlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10:185–191

    PubMed  CAS  PubMed Central  Google Scholar 

  • Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13:1097–1101

    PubMed  CAS  Google Scholar 

  • Bryant RJ, Pawlowski T, Catto JW, Marsden G, Vessella RL, Rhees B, Kuslich C, Visakorpi T, Hamdy FC (2012) Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer 106:768–774

    PubMed  CAS  PubMed Central  Google Scholar 

  • Budhu A, Ji J, Wang XW (2010) The clinical potential of microRNAs. J Hematol Oncol 3:37

    PubMed  PubMed Central  Google Scholar 

  • Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529

    PubMed  CAS  PubMed Central  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004

    PubMed  CAS  PubMed Central  Google Scholar 

  • Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MV, Hoydal M, Autore C, Russo MA, Dorn GW 2nd, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13:613–618

    PubMed  CAS  Google Scholar 

  • Carleton M, Cleary MA, Linsley PS (2007) MicroRNAs and cell cycle regulation. Cell Cycle 6:2127–2132

    PubMed  CAS  Google Scholar 

  • Carthew RW, Sontheimer EJ (2009) Origins and Mechanisms of miRNAs and siRNAs. Cell 136:642–655

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38:228–233

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen JF, Callis TE, Wang DZ (2009) microRNAs and muscle disorders. J Cell Sci 122:13–20

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chim SS, Shing TK, Hung EC, Leung TY, Lau TK, Chiu RW, Lo YM (2008) Detection and characterization of placental microRNAs in maternal plasma. Clin Chem 54:482–490

    PubMed  CAS  Google Scholar 

  • Chistiakov DA, Sobenin IA, Orekhov AN (2012) Strategies to deliver microRNAs as potential therapeutics in the treatment of cardiovascular pathology. Drug Deliv 19:392–405

    PubMed  CAS  Google Scholar 

  • Choi WY, Giraldez AJ, Schier AF (2007) Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science 318:271–274

    PubMed  CAS  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102:13944–13949

    PubMed  CAS  PubMed Central  Google Scholar 

  • Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibe B, Bouix J, Caiment F, Elsen JM, Eychenne F, Larzul C, Laville E, Meish F, Milenkovic D, Tobin J, Charlier C, Georges M (2006) A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 38:813–818

    PubMed  CAS  Google Scholar 

  • Coelho M, Ferreira JJ (2012) Late-stage Parkinson disease. Nat Rev Neurol 8:435–442

    PubMed  CAS  Google Scholar 

  • Corsten MF, Miranda R, Kasmieh R, Krichevsky AM, Weissleder R, Shah K (2007) MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res 67:8994–9000

    PubMed  CAS  Google Scholar 

  • Corsten MF, Papageorgiou A, Verhesen W, Carai P, Lindow M, Obad S, Summer G, Coort SL, Hazebroek M, van Leeuwen R, Gijbels MJ, Wijnands E, Biessen EA, De Winther MP, Stassen FR, Carmeliet P, Kauppinen S, Schroen B, Heymans S (2012) MicroRNA profiling identifies microRNA-155 as an adverse mediator of cardiac injury and dysfunction during acute viral myocarditis. Circ Res 111:415–425

    PubMed  CAS  Google Scholar 

  • Dai Y, Huang YS, Tang M, Lv TY, Hu CX, Tan YH, Xu ZM, Yin YB (2007) Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. Lupus 16:939–946

    PubMed  CAS  Google Scholar 

  • Davies KE, Nowak KJ (2006) Molecular mechanisms of muscular dystrophies: old and new players. Nat Rev Mol Cell Biol 7:762–773

    PubMed  CAS  Google Scholar 

  • Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721–726

    PubMed  CAS  Google Scholar 

  • Eiring AM, Harb JG, Neviani P, Garton C, Oaks JJ, Spizzo R, Liu S, Schwind S, Santhanam R, Hickey CJ, Becker H, Chandler JC, Andino R, Cortes J, Hokland P, Huettner CS, Bhatia R, Roy DC, Liebhaber SA, Caligiuri MA, Marcucci G, Garzon R, Croce CM, Calin GA, Perrotti D (2010) miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell 140:652–665

    PubMed  CAS  PubMed Central  Google Scholar 

  • Eisenberg I, Eran A, Nishino I, Moggio M, Lamperti C, Amato AA, Lidov HG, Kang PB, North KN, Mitrani-Rosenbaum S, Flanigan KM, Neely LA, Whitney D, Beggs AH, Kohane IS, Kunkel LM (2007) Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci USA 104:17016–17021

    PubMed  CAS  PubMed Central  Google Scholar 

  • El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D, van Obberghen E (2008) miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes 57:2708–2717

    PubMed  PubMed Central  Google Scholar 

  • Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S, Lindholm M, Hedtjarn M, Hansen HF, Berger U, Gullans S, Kearney P, Sarnow P, Straarup EM, Kauppinen S (2008) LNA-mediated microRNA silencing in non-human primates. Nature 452:896–899

    PubMed  CAS  Google Scholar 

  • Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, Watts L, Booten SL, Graham M, McKay R, Subramaniam A, Propp S, Lollo BA, Freier S, Bennett CF, Bhanot S, Monia BP (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3:87–98

    PubMed  CAS  Google Scholar 

  • Esquela-Kerscher A, Slack FJ (2006) Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    PubMed  CAS  Google Scholar 

  • Esquela-Kerscher A, Johnson SM, Bai L, Saito K, Partridge J, Reinert KL, Slack FJ (2005) Post-embryonic expression of C. elegans microRNAs belonging to the lin-4 and let-7 families in the hypodermis and the reproductive system. Dev Dyn 234:868–877

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fang Z, Rajewsky N (2011) The impact of miRNA target sites in coding sequences and in 3′UTRs. PloS ONE 6:e18067

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fernandez-Hernando C, Suarez Y, Rayner KJ, Moore KJ (2011) MicroRNAs in lipid metabolism. Curr Opin Lipidol 22:86–92

    PubMed  CAS  PubMed Central  Google Scholar 

  • Finnerty JR, Wang WX, Hebert SS, Wilfred BR, Mao G, Nelson PT (2010) The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases. J Mol Biol 402:491–509

    PubMed  CAS  PubMed Central  Google Scholar 

  • Garzon R, Calin GA, Croce CM (2009) MicroRNAs in cancer. Annu Rev Med 60:167–179

    PubMed  CAS  Google Scholar 

  • Gauthier BR, Wollheim CB (2006) MicroRNAs: ‘ribo-regulators’ of glucose homeostasis. Nat Med 12:36–38

    PubMed  CAS  Google Scholar 

  • Griffiths-Jones S (2006) miRBase: the microRNA sequence database. Methods Mol Biol 342:129–138

    PubMed  CAS  Google Scholar 

  • Gumireddy K, Young DD, Xiong X, Hogenesch JB, Huang Q, Deiters A (2008) Small-molecule inhibitors of microrna miR-21 function. Angew Chem Int Ed Engl 47:7482–7484

    PubMed  CAS  PubMed Central  Google Scholar 

  • Han M, Yang Z, Sayed D, He M, Gao S, Lin L, Yoon S, Abdellatif M (2012) GATA4 expression is primarily regulated via a miR-26b-dependent post-transcriptional mechanism during cardiac hypertrophy. Cardiovasc Res 93:645–654

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K, Carthew RW, Ruohola-Baker H (2005) Stem cell division is regulated by the microRNA pathway. Nature 435:974–978

    PubMed  CAS  Google Scholar 

  • Hebert SS, Horre K, Nicolai L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, Kauppinen S, Delacourte A, De Strooper B (2008) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci USA 105:6415–6420

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hebert SS, Horre K, Nicolai L, Bergmans B, Papadopoulou AS, Delacourte A, De Strooper B (2009) MicroRNA regulation of Alzheimer’s amyloid precursor protein expression. Neurobiol Dis 33:422–428

    PubMed  CAS  Google Scholar 

  • Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S, Egan DA, Li A, Huang G, Klein-Szanto AJ, Gimotty PA, Katsaros D, Coukos G, Zhang L, Pure E, Agami R (2008) The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 10:202–210

    PubMed  CAS  Google Scholar 

  • Huang ZP, Chen J, Seok HY, Zhang Z, Kataoka M, Hu X, Wang DZ (2013) MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress. Circ Res 112:1234–1243

    PubMed  CAS  PubMed Central  Google Scholar 

  • Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070

    PubMed  CAS  Google Scholar 

  • Jansson MD, Lund AH (2012) MicroRNA and cancer. Mol Oncol 6:590–610

    PubMed  CAS  Google Scholar 

  • Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647

    PubMed  CAS  Google Scholar 

  • Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309:1577–1581

    PubMed  CAS  Google Scholar 

  • Kehat I, Molkentin JD (2010) Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation 122:2727–2735

    PubMed  Google Scholar 

  • Kim HK, Lee YS, Sivaprasad U, Malhotra A, Dutta A (2006) Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol 174:677–687

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kopelman PG (2000) Obesity as a medical problem. Nature 404:635–643

    PubMed  CAS  Google Scholar 

  • Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, Mendell JR, Mendell JT (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137:1005–1017

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39:673–677

    PubMed  CAS  Google Scholar 

  • Lalani TA, Kanne JP, Hatfield GA, Chen P (2004) Imaging findings in systemic lupus erythematosus. Radiographics 24:1069–1086

    PubMed  Google Scholar 

  • Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, Kauppinen S, Orum H (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327:198–201

    PubMed  CAS  PubMed Central  Google Scholar 

  • Latronico MV, Condorelli G (2011) microRNAs in hypertrophy and heart failure. Exp Biol Med (Maywood) 236:125–131

    CAS  Google Scholar 

  • Lebanony D, Benjamin H, Gilad S, Ezagouri M, Dov A, Ashkenazi K, Gefen N, Izraeli S, Rechavi G, Pass H, Nonaka D, Li J, Spector Y, Rosenfeld N, Chajut A, Cohen D, Aharonov R, Mansukhani M (2009) Diagnostic assay based on hsa-miR-205 expression distinguishes squamous from nonsquamous non-small-cell lung carcinoma. J Clin Oncol 27:2030–2037

    PubMed  CAS  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    PubMed  CAS  Google Scholar 

  • Lee EJ, Gusev Y, Jiang J, Nuovo GJ, Lerner MR, Frankel WL, Morgan DL, Postier RG, Brackett DJ, Schmittgen TD (2007) Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 120:1046–1054

    PubMed  CAS  PubMed Central  Google Scholar 

  • Li Y, Vecchiarelli-Federico LM, Li YJ, Egan SE, Spaner D, Hough MR, Ben-David Y (2012) The miR-17-92 cluster expands multipotent hematopoietic progenitors whereas imbalanced expression of its individual oncogenic miRNAs promotes leukemia in mice. Blood 119:4486–4498

    PubMed  CAS  Google Scholar 

  • Lin Q, Gao Z, Alarcon RM, Ye J, Yun Z (2009) A role of miR-27 in the regulation of adipogenesis. FEBS J 276:2348–2358

    PubMed  CAS  Google Scholar 

  • Long JM, Ray B, Lahiri DK (2012) MicroRNA-153 physiologically inhibits expression of amyloid-beta precursor protein in cultured human fetal brain cells and is dysregulated in a subset of Alzheimer disease patients. J Biol Chem 287:31298–31310

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lovis P, Gattesco S, Regazzi R (2008) Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem 389:305–312

    PubMed  CAS  Google Scholar 

  • Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–688

    PubMed  CAS  Google Scholar 

  • Ma L, Reinhardt F, Pan E, Soutschek J, Bhat B, Marcusson EG, Teruya-Feldstein J, Bell GW, Weinberg RA (2010) Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol 28:341–347

    PubMed  CAS  PubMed Central  Google Scholar 

  • Markou A, Liang Y, Lianidou E (2011) Prognostic, therapeutic and diagnostic potential of microRNAs in non-small cell lung cancer. Clin Chem Lab Med 49:1591–1603

    PubMed  CAS  Google Scholar 

  • McCarthy JJ, Esser KA (2007) MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol 102:306–313

    PubMed  CAS  Google Scholar 

  • McCarthy JJ, Esser KA, Andrade FH (2007) MicroRNA-206 is overexpressed in the diaphragm but not the hindlimb muscle of mdx mouse. Am J Physiol Cell Physiol 293:C451–457

    PubMed  CAS  Google Scholar 

  • Mendell JT (2008) MiRiad roles for the miR-17-92 cluster in development and disease. Cell 133:217–222

    PubMed  CAS  PubMed Central  Google Scholar 

  • Norlin S, Ahlgren U, Edlund H (2005) Nuclear factor-{kappa}B activity in {beta}-cells is required for glucose-stimulated insulin secretion. Diabetes 54:125–132

    PubMed  CAS  Google Scholar 

  • O’Brien RJ, Wong PC (2011) Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 34:185–204

    PubMed  PubMed Central  Google Scholar 

  • Olive V, Jiang I, He L (2010) mir-17-92, a cluster of miRNAs in the midst of the cancer network. Int J Biochem Cell Biol 42:1348–1354

    PubMed  CAS  PubMed Central  Google Scholar 

  • Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30:460–471

    PubMed  Google Scholar 

  • O’Rourke JR, Georges SA, Seay HR, Tapscott SJ, McManus MT, Goldhamer DJ, Swanson MS, Harfe BD (2007) Essential role for Dicer during skeletal muscle development. Dev Biol 311:359–368

    PubMed  PubMed Central  Google Scholar 

  • Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408:86–89

    PubMed  CAS  Google Scholar 

  • Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230

    PubMed  CAS  Google Scholar 

  • Rong Y, Bao W, Shan Z, Liu J, Yu X, Xia S, Gao H, Wang X, Yao P, Hu FB, Liu L (2013) Increased microRNA-146a levels in plasma of patients with newly diagnosed type 2 diabetes mellitus. PloS ONE 8:e73272

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448:83–86

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ryland GL, Bearfoot JL, Doyle MA, Boyle SE, Choong DY, Rowley SM, Tothill RW, Gorringe KL, Campbell IG (2012) MicroRNA genes and their target 3′-untranslated regions are infrequently somatically mutated in ovarian cancers. PloS ONE 7:e35805

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sarma NJ, Tiriveedhi V, Ramachandran S, Crippin J, Chapman W, Mohanakumar T (2012) Modulation of immune responses following solid organ transplantation by microRNA. Exp Mol Pathol 93:378–385

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schratt G (2009) Fine-tuning neural gene expression with microRNAs. Curr Opin Neurobiol 19:213–219

    PubMed  CAS  Google Scholar 

  • Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY (2007) miR-21-mediated tumor growth. Oncogene 26:2799–2803

    PubMed  CAS  Google Scholar 

  • Srivastava A, Suy S, Collins SP, Kumar D (2011) Circulating MicroRNA as biomarkers: an update in prostate cancer. Mol Cell Pharmacol 3:115–124

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stanczyk J, Pedrioli DM, Brentano F, Sanchez-Pernaute O, Kolling C, Gay RE, Detmar M, Gay S, Kyburz D (2008) Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum 58:1001–1009

    PubMed  Google Scholar 

  • Stein CA, Hansen JB, Lai J, Wu S, Voskresenskiy A, Hog A, Worm J, Hedtjarn M, Souleimanian N, Miller P, Soifer HS, Castanotto D, Benimetskaya L, Orum H, Koch T (2010) Efficient gene silencing by delivery of locked nucleic acid antisense oligonucleotides, unassisted by transfection reagents. Nucleic Acids Res 38:e3

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stenvang J, Silahtaroglu AN, Lindow M, Elmen J, Kauppinen S (2008) The utility of LNA in microRNA-based cancer diagnostics and therapeutics. Semin Cancer Biol 18:89–102

    PubMed  CAS  Google Scholar 

  • Su J, Baigude H, McCarroll J, Rana TM (2011) Silencing microRNA by interfering nanoparticles in mice. Nucleic Acids Res 39:e38

    PubMed  CAS  PubMed Central  Google Scholar 

  • Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756

    PubMed  CAS  Google Scholar 

  • Takanabe R, Ono K, Abe Y, Takaya T, Horie T, Wada H, Kita T, Satoh N, Shimatsu A, Hasegawa K (2008) Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet. Biochem Biophys Res Commun 376:728–732

    PubMed  CAS  Google Scholar 

  • Tang X, Muniappan L, Tang G, Ozcan S (2009) Identification of glucose-regulated miRNAs from pancreatic beta cells reveals a role for miR-30d in insulin transcription. RNA 15:287–293

    PubMed  CAS  PubMed Central  Google Scholar 

  • Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, Shinomura Y, Tokino T (2008) Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 68:4123–4132

    PubMed  CAS  Google Scholar 

  • Trang P, Wiggins JF, Daige CL, Cho C, Omotola M, Brown D, Weidhaas JB, Bader AG, Slack FJ (2011) Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther 19:1116–1122

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ucar A, Gupta SK, Fiedler J, Erikci E, Kardasinski M, Batkai S, Dangwal S, Kumarswamy R, Bang C, Holzmann A, Remke J, Caprio M, Jentzsch C, Engelhardt S, Geisendorf S, Glas C, Hofmann TG, Nessling M, Richter K, Schiffer M, Carrier L, Napp LC, Bauersachs J, Chowdhury K, Thum T (2012) The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun 3:1078

    PubMed  PubMed Central  Google Scholar 

  • Ul Hussain M (2012) Micro-RNAs (miRNAs): genomic organisation, biogenesis and mode of action. Cell Tissue Res 349:405–413

    PubMed  Google Scholar 

  • van den Berg A, Mols J, Han J (2008) RISC-target interaction: cleavage and translational suppression. Biochim Biophys Acta 1779:668–677

    PubMed  PubMed Central  Google Scholar 

  • van Rooij E (2011) The art of microRNA research. Circ Res 108:219–234

    PubMed  Google Scholar 

  • van Rooij E, Olson EN (2007) MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest 117:2369–2376

    PubMed  PubMed Central  Google Scholar 

  • van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA, Olson EN (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA 103:18255–18260

    PubMed  PubMed Central  Google Scholar 

  • van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316:575–579

    PubMed  Google Scholar 

  • Vella MC, Choi EY, Lin SY, Reinert K, Slack FJ (2004) The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3′UTR. Gene Dev 18:132–137

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang Q, Li YC, Wang J, Kong J, Qi Y, Quigg RJ, Li X (2008a) miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. Proc Natl Acad Sci USA 105:2889–2894

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT (2008b) The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 28:1213–1223

    PubMed  PubMed Central  Google Scholar 

  • Wang WX, Huang Q, Hu Y, Stromberg AJ, Nelson PT (2011) Patterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matter. Acta Neuropathol 121:193–205

    PubMed  PubMed Central  Google Scholar 

  • Weidhaas JB, Babar I, Nallur SM, Trang P, Roush S, Boehm M, Gillespie E, Slack FJ (2007) MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res 67:11111–11116

    PubMed  CAS  Google Scholar 

  • Wengel J, Vester B, Lundberg LB, Douthwaite S, Sorensen MD, Babu BR, Gait MJ, Arzumanov A, Petersen M, Nielsen JT (2003) LNA and alpha-L-LNA: towards therapeutic applications. Nucleosides Nucleotides Nucleic Acids 22:601–604

    PubMed  CAS  Google Scholar 

  • Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D, Bader AG (2010) Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res 70:5923–5930

    PubMed  CAS  PubMed Central  Google Scholar 

  • Xu HF, Ding YJ, Shen YW, Xue AM, Xu HM, Luo CL, Li BX, Liu YL, Zhao ZQ (2012) MicroRNA- 1 represses Cx43 expression in viral myocarditis. Mol Cell Biochem 362:141–148

    PubMed  CAS  Google Scholar 

  • Yao Y, Suo AL, Li ZF, Liu LY, Tian T, Ni L, Zhang WG, Nan KJ, Song TS, Huang C (2009) MicroRNA profiling of human gastric cancer. Mol Med Rep 2:963–970

    PubMed  CAS  Google Scholar 

  • Yi C, Xie WD, Li F, Lv Q, He J, Wu J, Gu D, Xu N, Zhang Y (2011) MiR-143 enhances adipogenic differentiation of 3T3-L1 cells through targeting the coding region of mouse pleiotrophin. FEBS Lett 585:3303–3309

    PubMed  CAS  Google Scholar 

  • Yu L, Todd NW, Xing L, Xie Y, Zhang H, Liu Z, Fang H, Zhang J, Katz RL, Jiang F (2010) Early detection of lung adenocarcinoma in sputum by a panel of microRNA markers. Int J Cancer 127:2870–2878

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

A UGC fellowship to R.M. and Project funding (BT/PR11917/Med/30/181/2009) from the Department of Biotechnology (DBT), New Delhi, to M.U.H. are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahboob Ul Hussain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maqbool, R., Hussain, M.U. MicroRNAs and human diseases: diagnostic and therapeutic potential. Cell Tissue Res 358, 1–15 (2014). https://doi.org/10.1007/s00441-013-1787-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1787-3

Keywords

Navigation