Skip to main content

Advertisement

Log in

Assessment of novel binocular colour, motion and contrast tests in glaucoma

  • Regular article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The effects of glaucoma on binocular visual sensitivity for the detection of various stimulus attributes are investigated at the fovea and in four paracentral retinal regions. The study employed a number of visual stimuli designed to isolate the processing of various stimulus attributes. We measured absolute contrast detection thresholds and functional contrast sensitivity by using Landolt ring stimuli. This psychophysical Landolt C-based contrast test of detection and gap discrimination allowed us to test parafoveally at 6 ° from fixation and foveally by employing interleaved testing locations. First-order motion perception was examined by using moving stimuli embedded in static luminance contrast noise. Red/green (RG) and yellow/blue (YB) colour thresholds were measured with the Colour Assessment and Diagnosis (CAD) test, which utilises random dynamic luminance contrast noise (± 45 %) to ensure that only colour and not luminance signals are available for target detection. Subjects were normal controls (n = 65) and glaucoma patients with binocular visual field defects (n = 15) classified based on their Humphrey Field Analyzer mean deviation (MD) scores. The impairment of visual function varied depending on the stimulus attribute and location tested. Progression of loss was noted for all tests as the degree of glaucoma increased. For subjects with mild glaucoma (MD −0.01 dB to −6.00 dB) significantly more data points fell outside the normal age-representative range for RG colour thresholds than for any other visual test, followed by motion thresholds. This was particularly the case for the parafoveal data compared with the foveal data. Thus, a multifaceted measure of binocular visual performance, incorporating RG colour and motion test at multiple locations, might provide a better index for comparison with quality of life measures in glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams AJ, Rodic R, Husted R (1982) Spectral sensitivity and colour discrimination changes in glaucoma and glaucoma-suspect patients. Invest Ophthalmol Vis Sci 23:516–524

    PubMed  CAS  Google Scholar 

  • Azzopardi P, Cowey A (2001) Motion discrimination in cortically blind patients. Brain 124:30–46

    Article  PubMed  CAS  Google Scholar 

  • Bach M, Sulimma F, Gerling J (1998) Little local correlation of the pattern electroretinogram (PERG) and visual field measures in early glaucoma. Doc Ophthalmol 94:253–263

    Article  CAS  Google Scholar 

  • Barbur JL (1991) The P-SCAN 100 system for simultaneous measurements of pupil size and eye movements. J Psychophysiol 5:231–235

    Google Scholar 

  • Barbur JL, Connolly DM (2011) Effects of hypoxia on colour vision with emphasis on the mesopic range. Expert Rev Ophthalmol 6:409–420

    Article  Google Scholar 

  • Barbur JL, Konstantakopoulou E (2012) Changes in color vision with decreasing light level: separating the effects of normal aging from disease. J Opt Soc Am A Opt Image Sci Vis 29:A27–A35

    Article  PubMed  Google Scholar 

  • Barbur JL, Birch J, Harlow JA (1992) Threshold and suprathreshold responses to chromatic stimuli using psychophysical and pupillometric methods. In: Optical Society of America (eds) Noninvasive assessment of the visual system, vol 1, Technical Digest. Optical Society of America, Washington DC, pp 51–54

    Google Scholar 

  • Barbur JL, Harlow JA, Plant GT (1994) Insights into the different exploits of colour in the visual cortex. Proc R Soc Lond B Biol Sci 258:327–334

    Article  CAS  Google Scholar 

  • Bergin C, Redmond T, Nathwani N, Verdon-Roe GM, Crabb DP, Anderson RS, Garway-Heath DF (2011) The effect of induced intraocular stray light on perimetric tests. Invest Ophthalmol Vis Sci 52:3676–3682

    Article  PubMed  Google Scholar 

  • Bosworth CF, Sample PA, Weinreb RN (1997) Motion perception thresholds in areas of glaucomatous visual field loss. Vis Res 37:1989–1997

    Article  PubMed  CAS  Google Scholar 

  • Bullimore MA, Wood JM, Swenson K (1993) Motion perception in glaucoma. Invest Ophthalmol Vis Sci 34:3526–3533

    PubMed  CAS  Google Scholar 

  • Burr JM, Mowatt G, Hernández R, Siddiqui MAR, Cook J, Lourenco T, Ramsay C, Vale L, Fraser C, Azuara-Blanco A, Deeks J, Cairns J, Wormald R, McPherson S, Rabindranath K, Grant A (2007) The clinical effectiveness and cost-effectiveness of screening for open angle glaucoma: a systematic review and economic evaluation. Health Technol Assess 2007:11

    Google Scholar 

  • Castelo-Branco M, Faria P, Forjaz V, Kozak LR, Azevedo H (2004) Simultaneous comparison of relative damage to chromatic pathways in ocular hypertension and glaucoma: correlation with clinical measures. Invest Ophthalmol Vis Sci 45:499–505

    Article  PubMed  Google Scholar 

  • Chisholm CM, Evans ADB, Harlow JA, Barbur JL (2003) New test to assess pilot’s vision following refractive surgery. Aviat Space Environ Med 74:551–559

    PubMed  Google Scholar 

  • Crabb DP, Viswanathan AC (2005) Integrated visual fields: a new approach to measuring the binocular field of view and visual disability. Graefes Arch Clin Exp Ophthalmol 243:210–216

    Article  PubMed  Google Scholar 

  • Dacey DM, Lee BB, Stafford DK, Pokorny J, Smith VC (1996) Horizontal cells of the primate retina: cone specificity without spectral opponency. Science 271:656–659

    Google Scholar 

  • Edgar DF, Rudnicka A (2007) Glaucoma identification and co-management. Butterworth/Heinemann, London

    Google Scholar 

  • Edgar DF, Barbur JL, Chisholm CM, Plant G, Galton M (2002) Medical aspects of fitness to drive: visual field defects. Report for the Department for Transport. Department for Transport, London

    Google Scholar 

  • Fisk GD, Owsley C, Mennemeier M (2002) Vision, attention, and selfreported driving behaviors in community-dwelling stroke survivors. Arch Phys Med Rehabil 83:469–477

    Article  PubMed  Google Scholar 

  • Glen FC, Crabb DP, Garway-Heath DF (2011) The direction of research into visual disability and quality of life in glaucoma. Biomed Central Ophthalmol 11:1471–2415

    Google Scholar 

  • Goldberg I, Clement CI, Chiang TH, Walt JG, Lee LJ, Graham S, Healey PR (2009) Assessing quality of life in patients with glaucoma using the glaucoma quality of life-15 (GQL-15) questionnaire. J Glaucoma 18:6–12

    Article  PubMed  Google Scholar 

  • Haegerstrom-Portnoy G (2005) The Glenn A. Fry Award Lecture 2003: vision in elders—summary of findings of the SKI study. Optom Vis Sci 82:87–93

    Article  PubMed  Google Scholar 

  • Hawkins AS, Szlyk JP, Ardickas Z, Alexander KR, Wilensky JT (2003) Comparison of contrast sensitivity, visual acuity, and Humphrey visual field testing in patients with glaucoma. J Glaucoma 12:134–138

    Article  PubMed  Google Scholar 

  • Jampel HD, Schwartz A, Pollack I, Abrams D, Weiss H, Miller R (2002) Glaucoma patients’ assessment of their visual function and quality of life. J Glaucoma 11:154–163

    Article  PubMed  Google Scholar 

  • Jampel HD, Singh K, Lin SC, Chen TC, Francis BA, Hodapp E, Samples JR, Smith SD (2011) Assessment of visual function in glaucoma: a report by the American Academy of Ophthalmology. Ophthalmology 118:986–1002

    Article  PubMed  Google Scholar 

  • Janz NK, Wren PA, Lichter PR, Musch DC, Gillespie BW, Guire KE (2001) Quality of life in newly diagnosed glaucoma patients: the Collaborative Initial Glaucoma Treatment Study. Ophthalmology 108:887–898

    Article  PubMed  CAS  Google Scholar 

  • Johnson CA, Adams AJ, Casson EJ (1993a) Blue-on yellow perimetry can predict the development of glaucomatous visual field loss. Arch Ophthalmol 111:645–650

    Article  PubMed  CAS  Google Scholar 

  • Johnson CA, Adams AJ, Casson EJ, Brandt JD (1993b) Progression of early glaucomatous visual field loss as detected by blue-on-yellow and standard white-on-white automated perimetry. Arch Ophthalmol 111:651–656

    Article  PubMed  CAS  Google Scholar 

  • Karwatsky P, Overbury O, Faubert J (2004) Red-green chromatic mechanisms in normal aging and glaucomatous observers. Invest Ophthalmol Vis Sci 45:2861–2866

    Article  PubMed  Google Scholar 

  • Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miler JP, Parrish RK II, Wilson MR, Gordon MO, for the Ocular Hypertension Treatment Study Group (2002) The ocular hypertension treatment study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 120:701–713

    Article  PubMed  Google Scholar 

  • Köllner H (1912) Die störungen des Farbensinnes. Ihre klinische Bedeutung und ihre Diagnose. Karger, Berlin

    Google Scholar 

  • Krastel H, Moreland JD (1991) Inherited and acquired colour vision deficiencies, vol 7. Colour vision deficiencies in ophthalmic diseases. Macmillan, London, pp 115–172

    Google Scholar 

  • Lee BB (1991) Spectral sensitivity in primate vision. In: Kulikowski JJ, Walsh V, Murray IJ (ed) Vision and visual dysfunction, vol 5. Limits of vision. Macmillan, London, pp 191–201

    Google Scholar 

  • Lennie P, Krauskopf J, Sclar G (1990) Chromatic mechanisms in striate cortex of macaque. J Neurosci 10:649–669

    PubMed  CAS  Google Scholar 

  • MacAdam DL (1942) Visual sensitivities to color differences in daylight. J Opt Soc Am 32:247–274

    Article  Google Scholar 

  • Marré M, Marré E (1986) Erworbene Störungen des Farbsehens, vol 50, 1st edn. Abhandlungen aus dem Gebiet der Augenheilkunde, Sammlung von Monographien. VEB/Thieme, Leipzig

    Google Scholar 

  • McKendrick AM, Badcock DR, Morgan WH (2004) Psychophysical measurement of neural adaptation abnormalities in magnocellular and parvocellular pathways in glaucoma. Invest Ophthalmol Vis Sci 45:1846–1853

    Article  PubMed  Google Scholar 

  • Membrey L, Kogure S, Fitzke FW (1999) A comparison of the effects of neutral density filters and diffusing filters on motion detection perimetry, white-on-white perimetry and frequency doubling perimetry. In: Wall M, Wild JM (eds) Perimetry update 1998–1999. Proceedings of the XIIIth International Perimetric Society Meeting, Perimetric Society. Kugler, The Hague, pp 75–83

    Google Scholar 

  • Moro SI, Rodriguez-Carmona ML, Frost EC, Plant GT, Barbur JL (2007) Recovery of vision and pupil responses in optic neuritis and multiple sclerosis. Ophthalmic Physiol Opt 27:451–460

    Article  PubMed  CAS  Google Scholar 

  • Nelson P, Aspinall P, O’Brien C (1999) Patients’ perception of visual impairment in glaucoma: a pilot study. Br J Ophthalmol 83:546–552

    Article  PubMed  CAS  Google Scholar 

  • NICE. Glaucoma: diagnosis and management of chronic open angle glaucoma and ocular hypertension. Clinical guidelines, CG85—Issued: April 2009. http://www.nice.org.uk/guidance/cg85

  • Pacheco-Cutillas M, Sahraie A, Edgar DF (1999) Acquired colour vision defects in glaucoma—their detection and clinical significance. Br J Ophthalmol 83:1396–1402

    Article  PubMed  CAS  Google Scholar 

  • Petzold A, Plant GT (2005) Central visual field defects and driving abilities. Ophthalmologica 219:191–201

    Article  PubMed  CAS  Google Scholar 

  • Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90:262–267

    Article  PubMed  CAS  Google Scholar 

  • Rauscher FG (2009) Central and peripheral vision: effects of age and disease [Thesis]. City University London, London, UK

  • Rauscher FG, Chisholm CM, Crabb DP, Barbur JL, Edgar DF, Plant GT, James-Galton M, Petzold A, Dunne MCM, Davies LN, Underwood GJ, Phelps NR, Viswanathan AC (2007) Central Scotomata and Driving Project. Department for Transport Report. Department for Transport, London

    Google Scholar 

  • Rauscher FG, Plant GT, James-Galton M, Barbur JL (2011) Evidence for non-opponent coding of colour information in the visual cortex: selective loss of “green” sensitivity in a subject with damaged ventral occipito-temporal cortex. Neuro-ophthalmology 35:1–6

    Article  Google Scholar 

  • Rodriguez-Carmona ML (2006) Variability of chromatic sensitivity: fundamental studies and clinical applications [Thesis]. City University London, London, UK

  • Rodriguez-Carmona ML, Harlow JA, Walker G, Barbur JL (2005) The variability of normal trichromatic vision and the establishment of the “normal” range. In: Proceedings of the 10th Congress of the International Colour Association, Granada. Graficas Alhambra, Granada, pp 979–982

    Google Scholar 

  • Rodriguez-Carmona M, O’Neill-Biba M, Barbur JL (2012) Assessing the severity of color vision loss with implications for aviation and other occupational environments. Aviat Space Environ Med 83:19–29

    Article  PubMed  Google Scholar 

  • Rudnicka AR, Mt-Isa S, Owen CG, Cook DG, Ashby D (2006) Variations in primary open-angle glaucoma prevalence by age, gender, and race: a Bayesian meta-analysis. Invest Ophthalmol Vis Sci 47:4254–4261

    Article  PubMed  Google Scholar 

  • Sachs L (1998) Angewandte Statistik, 11th edn. Springer, Berlin

    Google Scholar 

  • Sinclair A (2012) A wider view of glaucoma. A review of functional vision loss in glaucoma patients. Optometry in Practice 13:85–96

    Google Scholar 

  • Sample P, Bosworth C, Weinreb R (1997) Short-wavelength automated perimetry and motion automated perimetry in patients with glaucoma. Arch Ophthalmol 115:1129–1133

    Article  PubMed  CAS  Google Scholar 

  • Silverman SE, Trick GL, Hart WM Jr (1990) Motion perception is abnormal in primary open-angle glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 31:722–729

    PubMed  CAS  Google Scholar 

  • Trick GL, Steinman SB, Amyot M (1995) Motion perception deficits in glaucomatous optic neuropathy. Vis Res 35:2225–2233

    Article  PubMed  CAS  Google Scholar 

  • Verriest G (1963) Further studies on acquired deficiency of color discrimination. J Opt Soc Am 53:185–195

    Article  PubMed  CAS  Google Scholar 

  • Viswanathan AC, McNaught AI, Poinoosawmy D, Fontana L, Crabb DP, Fitzke FW, Hitchings RA (1999) Severity and stability of glaucoma: patient perception compared with objective measurement. Arch Ophthalmol 117:450–454

    Article  PubMed  CAS  Google Scholar 

  • Westcott MC, Fitzke FW, Hitchings RA (1998) Abnormal motion displacement thresholds are associated with fine scale luminance sensitivity loss in glaucoma. Vis Res 38:3171–3180

    Article  PubMed  CAS  Google Scholar 

  • Westcott MC, Poinoosawmy D, Fitzke FW (1999) Abnormal maximum line displacement sensitivity and frequency-of-seeing curves for a motion stimulus in glaucoma. In: Wall M, Wild JM (eds) Perimetry update 1998–1999. Proceedings of the XIIIth International Perimetric Society Meeting, Perimetric Society. Kugler, The Hague, pp 201–208

    Google Scholar 

  • Willis A, Anderson SJ (2000) Effects of glaucoma and aging on photopic and scotopic motion perception. Invest Ophthalmol Vis Sci 41:325–335

    PubMed  CAS  Google Scholar 

  • Yucel YH, Zhang Q, Weinreb RN (2003) Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res 22:465–481

    Article  PubMed  Google Scholar 

  • Zihl J, Cramon D von, Mai N (1983) Selective disturbance of movement vision after bilateral brain damage. Brain 106:313–340

    Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Nicole Körber for her assistance with the graphs. The constructive comments from the anonymous reviewers were greatly appreciated by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franziska G. Rauscher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rauscher, F.G., Chisholm, C.M., Edgar, D.F. et al. Assessment of novel binocular colour, motion and contrast tests in glaucoma. Cell Tissue Res 353, 297–310 (2013). https://doi.org/10.1007/s00441-013-1675-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1675-x

Keywords

Navigation