Skip to main content

Advertisement

Log in

Optogenetics in psychiatric animal models

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Optogenetics is the optical control of neuronal excitability by genetically delivered light-activated channels and pumps and represents a promising tool to fuel the study of circuit function in psychiatric animal models. This review highlights three developments. First, we examine the application of optogenetics in one of the neuromodulators central to the pathophysiology of many psychiatric disorders, the dopaminergic system. We then discuss recent work in translating functional magnetic resonance imaging in small animals (in which optogenetics can be employed to reveal physiological mechanisms underlying disease-related alterations in brain circuits) to patients. Finally, we describe emerging technological developments for circuit manipulation in freely behaving animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Airan RD, Thompson KR, Fenno LE, Bernstein H, Deisseroth K (2009) Temporally precise in vivo control of intracellular signalling. Nature 458:1025–1029

    Article  PubMed  CAS  Google Scholar 

  • Ayling OGS, Harrison TC, Boyd JD, Goroshkov A, Murphy TH (2009) Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice. Nat Methods 6:219–224

    Article  PubMed  CAS  Google Scholar 

  • Bass CE, Grinevich VP, Vance ZB, Sullivan RP, Bonin KD, Budygin EA (2010) Optogenetic control of striatal dopamine release in rats. J Neurochem 114:1344–1352

    PubMed  CAS  Google Scholar 

  • Berndt A, Schoenenberger P, Mattis J, Tye KM, Deisseroth K, Hegemann P, Oertner TG (2011) High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proc Natl Acad Sci USA 108:7595–7600

    Article  PubMed  CAS  Google Scholar 

  • Bernstein JG, Boyden ES (2011) Optogenetic tools for analyzing the neural circuits of behavior. Trends Cogn Sci 15:592–600

    Article  PubMed  Google Scholar 

  • Bernstein JG, Garrity PA, Boyden ES (2012) Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits. Curr Opin Neurobiol 22:61–71

    Article  PubMed  CAS  Google Scholar 

  • Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  PubMed  CAS  Google Scholar 

  • Braff DL, Freedman R, Schork NJ, Gottesman II (2007) Deconstructing schizophrenia: an overview of the use of endophenotypes in order to understand a complex disorder. Schizophr Bull 33:21–32

    Article  PubMed  Google Scholar 

  • Cardin JA, Carlén M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai L-H, Moore CI (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459:663–667

    Article  PubMed  CAS  Google Scholar 

  • Chaudhury D, Walsh JJ, Friedman AK, Juarez B, Ku SM, Koo JW et al (2012) Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493:532–536

    Google Scholar 

  • Davis KL, Kahn RS, Ko G, Davidson M (1991) Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 148:1474–1486

    PubMed  CAS  Google Scholar 

  • Desai M, Kahn I, Knoblich U, Bernstein J, Atallah H, Yang A, Kopell N, Buckner RL, Graybiel AM, Moore CI, Boyden ES (2011) Mapping brain networks in awake mice using combined optical neural control and fMRI. J Neurophysiol 105:1393–1405

    Article  PubMed  CAS  Google Scholar 

  • Durstewitz D, Seamans JK (2002) The computational role of dopamine D1 receptors in working memory. Neural Netw 15:561–572

    Article  PubMed  Google Scholar 

  • Erbguth K, Prigge M, Schneider F, Hegemann P, Gottschalk A (2012) Bimodal activation of different neuron classes with the spectrally red-shifted channelrhodopsin chimera C1V1 in Caenorhabditis elegans. PLoS One 7:e46827

    Article  PubMed  CAS  Google Scholar 

  • Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412

    Article  PubMed  CAS  Google Scholar 

  • Grace A (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity—a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24

    Article  PubMed  CAS  Google Scholar 

  • Grossman N, Poher V, Grubb MS, Kennedy GT, Nikolic K, McGovern B, Berlinguer Palmini R, Gong Z, Drakakis EM, Neil MAA, Dawson MD, Burrone J, Degenaar P (2010) Multi-site optical excitation using ChR2 and micro-LED array. J Neural Eng 7:16004

    Article  PubMed  Google Scholar 

  • Han X, Qian X, Bernstein JG, Zhou H-H, Franzesi GT, Stern P, Bronson RT, Graybiel AM, Desimone R, Boyden ES (2009) Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron 62:191–198

    Article  PubMed  CAS  Google Scholar 

  • Han X, Chow BY, Zhou H, Klapoetke NC, Chuong A, Rajimehr R, Yang A, Baratta MV, Winkle J, Desimone R, Boyden ES (2011) A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front Syst Neurosci 5:18

    Article  PubMed  Google Scholar 

  • Harrison RR, Charles C (2003) A low-power low-noise CMOS amplifier for neural recording applications. IEEE J Solid State Circuits 38:958–965

    Article  Google Scholar 

  • Harrison RR, Kier RJ, Kim S, Rieth L, Warren DJ, Ledbetter NM, Clark GA, Solzbacher F, Chestek CA, Gilja V, Nuyujukian P, Ryu SI, Shenoy KV (2008) A wireless neural interface for chronic recording. In: Proc 2008 IEEE Biomedical Circuits and Systems Conference (BioCAS 2008), Baltimore, Md., USA, pp 125-128. 10.1109/BIOCAS.2008.4696890

  • Higley MJ, Sabatini BL (2010) Competitive regulation of synaptic Ca2+ influx by D2 dopamine and A2A adenosine receptors. Nat Neurosci 13:958–966

    Article  PubMed  CAS  Google Scholar 

  • Hnasko TS, Chuhma N, Zhang H, Goh GY, Sulzer D, Palmiter RD, Rayport S, Edwards RH (2010) Vesicular glutamate transport promotes dopamine storage and glutamate corelease in vivo. Neuron 65:643–656

    Article  PubMed  CAS  Google Scholar 

  • Insel TR (2010) The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior. Neuron 65:768–779

    Article  PubMed  CAS  Google Scholar 

  • Iwai Y, Honda S, Ozeki H, Hashimoto M, Hirase H (2011) A simple head-mountable LED device for chronic stimulation of optogenetic molecules in freely moving mice. Neurosci Res 70:124–127

    Article  PubMed  Google Scholar 

  • Jhou TC, Fields HL, Baxter MG, Saper CB, Holland PC (2009) The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron 61:786–800

    Article  PubMed  CAS  Google Scholar 

  • Kapur S (2003) Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatr 160:13–23

    Article  PubMed  Google Scholar 

  • Kapur S, Mamo D (2003) Half a century of antipsychotics and still a central role for dopamine D2 receptors. Prog Neuropsychopharmacol Biol Psychiatry 27:1081–1090

    Article  PubMed  CAS  Google Scholar 

  • Knobloch HS, Charlet A, Hoffmann LC, Eliava M, Khrulev S, Cetin AH, Osten P, Schwarz MK, Seeburg PH, Stoop R, Grinevich V (2012) Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73:553–566

    Article  PubMed  CAS  Google Scholar 

  • Knutson B, Gibbs SEB (2007) Linking nucleus accumbens dopamine and blood oxygenation. Psychopharmacology 191:813–822

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Durand R, Gradinaru V, Zhang F, Goshen I, Kim D-S, Fenno LE, Ramakrishnan C, Deisseroth K (2010) Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature 465:788–792

    Article  PubMed  CAS  Google Scholar 

  • Li Y-L, Huang Y, Lai Y-H (2009) Investigation of efficiency droop behaviors of InGaN/GaN multiple-quantum-well LEDs with various well thicknesses. IEEE J Sel Top Quantum Electron 15:1128–1131

    Article  Google Scholar 

  • Logothetis NK (2010) Bold claims for optogenetics. Nature 468:E3–E5

    Article  PubMed  CAS  Google Scholar 

  • Logothetis NK, Wandell BA (2004) Interpreting the BOLD signal. Annu Rev Physiol 66:735–769

    Article  PubMed  CAS  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  PubMed  CAS  Google Scholar 

  • Long MA, Fee MS (2008) Using temperature to analyse temporal dynamics in the songbird motor pathway. Nature 456:189–194

    Article  PubMed  CAS  Google Scholar 

  • Madisen L, Mao T, Koch H, Zhuo JM, Berenyi A, Fujisawa S et al (2012) A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 15:793–802

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto S, Miyake N, Jarskog LF, Fleischhacker WW, Lieberman JA (2012) Pharmacological treatment of schizophrenia: a critical review of the pharmacology and clinical effects of current and future therapeutic agents. Mol Psychiatry 17:1206–1227

    Article  PubMed  CAS  Google Scholar 

  • Mojtabai R, Olfson M (2010) National trends in psychotropic medication polypharmacy in office-based psychiatry. Arch Gen Psychiatry 67:26–36

    Article  PubMed  Google Scholar 

  • Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA 100:13940–13945

    Article  PubMed  CAS  Google Scholar 

  • Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15:2279–2284

    Article  PubMed  CAS  Google Scholar 

  • Poher V, Grossman N, Kennedy GT, Nikolic K, Zhang HX, Gong Z, Drakakis EM, Gu E, Dawson MD, French PMW, Degenaar P, Neil MAA (2008) Micro-LED arrays: a tool for two-dimensional neuron stimulation. J Phys D Appl Phys 41:094014

    Article  Google Scholar 

  • Rauch A, Rainer G, Logothetis NK (2008) The effect of a serotonin-induced dissociation between spiking and perisynaptic activity on BOLD functional MRI. Proc Natl Acad Sci USA 105:6759–6764

    Article  PubMed  CAS  Google Scholar 

  • Royer S, Zemelman BV, Barbic M, Losonczy A, Buzsáki G, Magee JC (2010) Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal. Eur J Neurosci 31:2279–2291

    Article  PubMed  Google Scholar 

  • Sarter M, Tricklebank M (2012) Revitalizing psychiatric drug discovery. Nat Rev Drug Discov 11:423–424

    Article  PubMed  CAS  Google Scholar 

  • Sartorius A, Kiening KL, Kirsch P, von Gall CC, Haberkorn U, Unterberg AW, Henn FA, Meyer-Lindenberg A (2010) Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. Biol Psychiatry 67:e9–e11

    Article  PubMed  Google Scholar 

  • Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599

    Article  PubMed  CAS  Google Scholar 

  • Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T et al (2007) Strong association of de novo copy number mutations with autism. Science 316:445–449

    Article  PubMed  CAS  Google Scholar 

  • Stamatakis AM, Stuber GD (2012) Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance. Nat Neurosci 15:1105–1107

    Article  PubMed  CAS  Google Scholar 

  • Stark E, Koos T, Buzsáki G (2012) Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals.J Neurophysiol 108:349–363

    Article  PubMed  Google Scholar 

  • Stefanik MT, Moussawi K, Kupchik YM, Smith KC, Miller RL, Huff ML, Deisseroth K, Kalivas PW, LaLumiere RT (2013) Optogenetic inhibition of cocaine seeking in rats. Addict Biol 18:50–53

    Google Scholar 

  • Stefansson H, Rujescu D, Cichon S, Pietiläinen OP, Ingason A, Steinberg S et al (2008) Large recurrent microdeletions associated with schizophrenia. Nature 455:232–236

    Article  PubMed  CAS  Google Scholar 

  • Stuber GD, Hnasko TS, Britt JP, Edwards RH, Bonci A (2010) Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J Neurosci 30:8229–8233

    Article  PubMed  CAS  Google Scholar 

  • Tai L-H, Lee AM, Benavidez N, Bonci A, Wilbrecht L (2012) Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value. Nat Neurosci 15:1281–1289

    Article  PubMed  CAS  Google Scholar 

  • Tan KR, Yvon C, Turiault M, Mirzabekov JJ, Doehner J, Labouèbe G, Deisseroth K, Tye KM, Lüscher C (2012) GABA neurons of the VTA drive conditioned place aversion. Neuron 73:1173–1183

    Article  PubMed  CAS  Google Scholar 

  • Tecuapetla F, Patel JC, Xenias H, English D, Tadros I, Shah F, Berlin J, Deisseroth K, Rice ME, Tepper JM, Koos T (2010) Glutamatergic signaling by mesolimbic dopamine neurons in the nucleus accumbens. J Neurosci 30:7105–7110

    Article  PubMed  CAS  Google Scholar 

  • Tritsch NX, Sabatini BL (2012) Dopaminergic modulation of synaptic transmission in cortex and striatum.Neuron 76:33–50

    Google Scholar 

  • Tritsch NX, Ding JB, Sabatini BL (2012) Dopaminergic neurons inhibit striatal output through non-canonical release of GABA.Nature 490:262-266

    Google Scholar 

  • Trudeau L-E (2004) Glutamate co-transmission as an emerging concept in monoamine neuron function. J Psychiatry Neurosci 29:296–310

    PubMed  Google Scholar 

  • Tsai H-C, Zhang F, Adamantidis A, Stuber GD, Bonci A, Lecea L de, Deisseroth K (2009) Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324:1080–1084

    Google Scholar 

  • Tye KM, Mirzabekov JJ, Warden MR, Ferenczi EA, Tsai H-C, Finkelstein J, Kim S-Y, Adhikari A, Thompson KR, Andalman AS, Gunaydin LA, Witten IB, Deisseroth K (2012) Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493:537–541

    Article  PubMed  Google Scholar 

  • Van Zessen R, Phillips JL, Budygin EA, Stuber GD (2012) Activation of VTA GABA neurons disrupts reward consumption. Neuron 73:1184–1194

    Article  PubMed  Google Scholar 

  • Wang J, Wagner F, Borton DA, Zhang J, Ozden I, Burwell RD, Nurmikko AV, Wagenen R van, Diester I, Deisseroth K (2012) Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications. J Neural Eng 9:016001

    Google Scholar 

  • Wentz CT, Bernstein JG, Monahan P, Guerra A, Rodriguez A, Boyden ES (2011) A wirelessly powered and controlled device for optical neural control of freely-behaving animals. J Neural Eng 8:046021

    Article  PubMed  Google Scholar 

  • Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O’Shea DJ, Sohal VS, Goshen I, Finkelstein J, Paz JT, Stehfest K, Fudim R, Ramakrishnan C, Huguenard JR, Hegemann P, Deisseroth K (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477:171–178

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Laiwalla F, Kim JA, Urabe H, Van Wagenen R, Song Y-K, Connors BW, Zhang F, Deisseroth K, Nurmikko AV (2009) Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue. J Neural Eng 6:055007

    Article  PubMed  Google Scholar 

  • Zorzos AN, Boyden ES, Fonstad CG (2010) Multiwaveguide implantable probe for light delivery to sets of distributed brain targets. Opt Lett 35:4133–4135

    Article  PubMed  Google Scholar 

  • Zorzos AN, Scholvin J, Boyden ES, Fonstad CG (2012) Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits. Opt Lett 37:4841–4843

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Kelsch.

Additional information

The authors are supported by the DFG Emmy-Noether-Program KE1661/1-1 and DFG grant SFB636 TP B08 (to W.K.) and a fellowship of the DFG Graduate Program “Translational Neuroscience” to (L.-L.O.). C.T.W. is supported by the Hertz Foundation Myhrvold Family Fellowship.

C.T.W is chief technical officer at Kendall Research Systems, LLC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wentz, C.T., Oettl, LL. & Kelsch, W. Optogenetics in psychiatric animal models. Cell Tissue Res 354, 61–68 (2013). https://doi.org/10.1007/s00441-013-1651-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1651-5

Keywords

Navigation