Skip to main content

Advertisement

Log in

Transmission, inheritance and replication of mitochondrial DNA in mammals: implications for reproductive processes and infertility

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The mitochondrial genome contributes key proteins to the electron-transfer chain, which through oxidative phosphorylation, generates the vast majority of cellular ATP. This maternally inherited genome is transmitted to subsequent generations through the oocyte. Its transmission, inheritance and replication are strictly regulated so that fully mature cells can be appropriately populated with mitochondrial DNA once they mature into adult cells. However, gametes do not always acquire the appropriate numbers of mitochondrial DNA copy; this often renders them inappropriate for successful fertilisation outcome. Furthermore, the number of assisted reproductive technologies that can overcome problems associated with infertility and that can provide enhanced genetic outcomes for the offspring is increasing. However, such techniques could also have a detrimental effect on offspring survival. If we are to introduce these technologies into in vitro fertilisation clinics and animal production, then we first need to validate their use carefully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amaral A, Ramalho-Santos J, St John JC (2007) The expression of polymerase gamma and mitochondrial transcription factor A and the regulation of mitochondrial DNA content in mature human sperm. Hum Reprod 22:1585–1596

    PubMed  CAS  Google Scholar 

  • Anderson S, Bankier AT, Barrell BG, Bruijn MH de, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    PubMed  CAS  Google Scholar 

  • Ankel-Simons F, Cummins JM (1996) Misconceptions about mitochondria and mammalian fertilization: implications for theories on human evolution. Proc Natl Acad Sci USA 93:13859–13863

    PubMed  CAS  Google Scholar 

  • Bao S, Ushijima H, Hirose A, Aono F, Ono Y, Kono T (2003) Development of bovine oocytes reconstructed with a nucleus from growing stage oocytes after fertilization in vitro. Theriogenology 59:1231–1239

    PubMed  Google Scholar 

  • Barritt JA, Brenner CA, Cohen J, Matt DW (1999) Mitochondrial DNA rearrangements in human oocytes and embryos. Mol Hum Reprod 5:927–933

    PubMed  CAS  Google Scholar 

  • Barritt JA, Brenner CA, Malter HE, Cohen J (2001) Rebuttal: interooplasmic transfers in humans. Reprod Biomed Online 3:47–48

    PubMed  Google Scholar 

  • Bergstrom CT, Pritchard J (1998) Germline bottlenecks and the evolutionary maintenance of mitochondrial genomes. Genetics 149:2135–2146

    PubMed  CAS  Google Scholar 

  • Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167–180

    PubMed  CAS  Google Scholar 

  • Birky CW Jr (1995) Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc Natl Acad Sci USA 92:11331–11338

    PubMed  CAS  Google Scholar 

  • Blok RB, Gook DA, Thorburn DR, Dahl HH (1997) Skewed segregation of the mtDNA nt 8993 (T→G) mutation in human oocytes. Am J Hum Genet 60:1495–1501

    PubMed  CAS  Google Scholar 

  • Bogenhagen DF, Rousseau D, Burke S (2008) The layered structure of human mitochondrial DNA nucleoids. J Biol Chem 283:3665–3675

    PubMed  CAS  Google Scholar 

  • Boulet L, Karpati G, Shoubridge EA (1992) Distribution and threshold expression of the tRNA(Lys) mutation in skeletal muscle of patients with myoclonic epilepsy and ragged-red fibers (MERRF). Am J Hum Genet 51:1187–1200

    PubMed  CAS  Google Scholar 

  • Bowles EJ, Lee JH, Alberio R, Lloyd RE, Stekel D, Campbell KH, St John JC (2007) Contrasting effects of in vitro fertilization and nuclear transfer on the expression of mtDNA replication factors. Genetics 176:1511–1526

    PubMed  CAS  Google Scholar 

  • Bowles EJ, Tecirlioglu RT, French AJ, Holland MK, St John JC (2008) Mitochondrial DNA transmission and transcription after somatic cell fusion to one or more cytoplasts. Stem Cells 26:775–782

    PubMed  CAS  Google Scholar 

  • Brenner CA, Wolny YM, Barritt JA, Matt DW, Munné S, Cohen J (1998) Mitochondrial DNA deletion in human oocytes and embryos. Mol Hum Reprod 4:887–892

    PubMed  CAS  Google Scholar 

  • Brown DR, Koehler CM, Lindberg GL, Freeman AE, Mayfield JE, Myers AM, Schutz MM, Beitz DC (1989) Molecular analysis of cytoplasmic genetic variation in Holstein cows. J Anim Sci 67:1926–1932

    PubMed  CAS  Google Scholar 

  • Brüggerhoff K, Zakhartchenko V, Wenigerkind H, Reichenbach HD, Prelle K, Schernthaner W, Alberio R, Küchenhoff H, Stojkovic M, Brem G, Hiendleder S, Wolf E (2002) Bovine somatic cell nuclear transfer using recipient oocytes recovered by ovum pick-up: effect of maternal lineage of oocyte donors. Biol Reprod 66:367–373

    PubMed  CAS  Google Scholar 

  • Cao L, Shitara H, Horii T, Nagao Y, Imai H, Abe K, Hara T, Hayashi J, Yonekawa H (2007) The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells. Nat Genet 39:386–390

    PubMed  CAS  Google Scholar 

  • Chan CC, Liu VW, Lau EY, Yeung WS, Ng EH, Ho PC (2005) Mitochondrial DNA content and 4977 bp deletion in unfertilized oocytes. Mol Hum Reprod 11:843–846

    PubMed  CAS  Google Scholar 

  • Chang KH, Lim JM, Kang SK, Lee BC, Moon SY, Hwang WS (2003) Blastocyst formation, karyotype, and mitochondrial DNA of interspecies embryos derived from nuclear transfer of human cord fibroblasts into enucleated bovine oocytes. Fertil Steril 80:1380–1387

    Google Scholar 

  • Chen X, Prosser R, Simonetti S, Sadlock J, Jagiello G, Schon EA (1995) Rearranged mitochondrial genomes are present in human oocytes. Am J Hum Genet 57:239–247

    PubMed  CAS  Google Scholar 

  • Chiaratti MR, Meirelles FV, Wells D, Poulton J (2011) Therapeutic treatments of mtDNA diseases at the earliest stages of human development. Mitochondrion 11:820–828

    PubMed  CAS  Google Scholar 

  • Cibelli JB, Campbell KH, Seidel GE, West MD, Lanza RP (2002) The health profile of cloned animals. Nat Biotechnol 20:13–14

    PubMed  CAS  Google Scholar 

  • Clayton DA (1992) Transcription and replication of animal mitochondrial DNAs. Int Rev Cytol 141:217–232

    PubMed  CAS  Google Scholar 

  • Cohen J, Scott R, Schimmel T, Levron J, Willadsen S (1997) Birth of infant after transfer of anucleate donor oocyte cytoplasm into recipient eggs. Lancet 350:186–187

    PubMed  CAS  Google Scholar 

  • Cox GF, Burger J, Lip V, Mau UA, Sperling K, Wu BL, Horsthemke B (2002) Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet 71:162–164

    Google Scholar 

  • Craven L, Tuppen HA, Greggains GD, Harbottle SJ, Murphy JL, Cree LM, Murdoch AP, Chinnery PF, Taylor RW, Lightowlers RN, Herbert M, Turnbull DM (2010) Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature 465:82–85

    PubMed  CAS  Google Scholar 

  • Cree LM, Samuels DC, Sousa Lopes SC de, Rajasimha HK, Wonnapinij P, Mann JR, Dahl HH, Chinnery PF (2008) A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nat Genet 40:249–254

    PubMed  CAS  Google Scholar 

  • Cummins JM, Wakayama T, Yanagimachi R (1997) Fate of microinjected sperm components in the mouse oocyte and embryo. Zygote 5:301–308

    PubMed  CAS  Google Scholar 

  • Cummins JM, Jequier AM, Martin R, Mehmet D, Goldblatt J (1998) Semen levels of mitochondrial DNA deletions in men attending an infertility clinic do not correlate with phenotype. Int J Androl 21:47–52

    PubMed  CAS  Google Scholar 

  • DeBaun MR, Niemitz EL, Feinberg AP (2003) Association of in vitro fertilization with Beckwith–Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet 72:156–160

    Google Scholar 

  • Dumollard R, Campbell K, Halet G, Carroll J, Swann K (2008) Regulation of cytosolic and mitochondrial ATP levels in mouse eggs and zygotes. Dev Biol 316:431–440

    PubMed  CAS  Google Scholar 

  • El Shourbagy SH, Spikings EC, Freitas M, St John JC (2006) Mitochondria directly influence fertilisation outcome in the pig. Reproduction 131:233–245

    PubMed  Google Scholar 

  • Elliott HR, Samuels DC, Eden JA, Relton CL, Chinnery PF (2008) Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet 83:254–260

    PubMed  CAS  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    PubMed  CAS  Google Scholar 

  • Facucho-Oliveira JM, St John JC (2009) The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev 5:140–158

    PubMed  CAS  Google Scholar 

  • Facucho-Oliveira JM, Alderson J, Spikings EC, Egginton S, St John JC (2007) Mitochondrial DNA replication during differentiation of murine embryonic stem cells. J Cell Sci 120:4025–4034

    PubMed  CAS  Google Scholar 

  • Fan W, Waymire KG, Narula N, Li P, Rocher C, Coskun PE, Vannan MA, Narula J, Macgregor GR, Wallace DC (2008) A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science 319:958–962

    PubMed  CAS  Google Scholar 

  • Folgerø T, Bertheussen K, Lindal S, Torbergsen T, Oian P (1993) Mitochondrial disease and reduced sperm motility. Hum Reprod 8:1863–1868

    PubMed  Google Scholar 

  • Gibson TC, Kubisch HM, Brenner CA (2005) Mitochondrial DNA deletions in rhesus macaque oocytes and embryos. Mol Hum Reprod 11:785–789

    PubMed  CAS  Google Scholar 

  • Gigarel N, Hesters L, Samuels DC, Monnot S, Burlet P, Kerbrat V, Lamazou F, Benachi A, Frydman R, Feingold J, Rotig A, Munnich A, Bonnefont JP, Frydman N, Steffann J (2011) Poor correlations in the levels of pathogenic mitochondrial DNA mutations in polar bodies versus oocytes and blastomeres in humans. Am J Hum Genet 88:494–498

    PubMed  CAS  Google Scholar 

  • Giles RE, Blanc H, Cann HM, Wallace DC (1980) Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci USA 77:6715–6719

    PubMed  CAS  Google Scholar 

  • Gyllensten U, Wharton D, Josefsson A, Wilson AC (1991) Paternal inheritance of mitochondrial DNA in mice. Nature 352:255–257

    PubMed  CAS  Google Scholar 

  • Hance N, Ekstrand MI, Trifunovic A (2005) Mitochondrial DNA polymerase gamma is essential for mammalian embryogenesis. Hum Mol Genet 14:1775–1783

    PubMed  CAS  Google Scholar 

  • Hauswirth WW, Laipis PJ (1982) Mitochondrial DNA polymorphism in a maternal lineage of Holstein cows. Proc Natl Acad Sci USA 79:4686–4690

    PubMed  CAS  Google Scholar 

  • Holt IJ, Harding AE, Petty RK, Morgan-Hughes JA (1990) A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am J Hum Genet 46:428–433

    PubMed  CAS  Google Scholar 

  • Houghton FD (2006) Energy metabolism of the inner cell mass and trophectoderm of the mouse blastocyst. Differentiation 74:11–18

    PubMed  CAS  Google Scholar 

  • Hsieh RH, Tsai NM, Au HK, Chang SJ, Wei YH, Tzeng CR (2002) Multiple rearrangements of mitochondrial DNA in unfertilized human oocytes. Fertil Steril 77:1012–1017

    PubMed  Google Scholar 

  • Innocenti P, Morrow EH, Dowling DK (2011) Experimental evidence supports a sex-specific selective sieve in mitochondrial genome evolution. Science 332:845–848

    PubMed  CAS  Google Scholar 

  • Jenuth JP, Peterson AC, Shoubridge EA (1997) Tissue-specific selection for different mtDNA genotypes in heteroplasmic mice. Nat Genet 16:93–95

    PubMed  CAS  Google Scholar 

  • Jiang Y, Kelly R, Peters A, Fulka H, Dickinson A, Mitchell DA, St John JC (2011) Interspecies somatic cell nuclear transfer is dependent on compatible mitochondrial DNA and reprogramming factors. PLoS One 6:e14805

    PubMed  CAS  Google Scholar 

  • Jones KT (2007) Intracellular calcium in the fertilization and development of mammalian eggs. Clin Exp Pharmacol Physiol 34:1084–1089

    PubMed  CAS  Google Scholar 

  • Kaneda H, Hayashi J, Takahama S, Taya C, Lindahl KF, Yonekawa H (1995) Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis. Proc Natl Acad Sci USA 92:4542–4546

    PubMed  CAS  Google Scholar 

  • Kao S, Chao HT, Wei YH (1995) Mitochondrial deoxyribonucleic acid 4977-bp deletion is associated with diminished fertility and motility of human sperm. Biol Reprod 52:729–736

    PubMed  CAS  Google Scholar 

  • Kaufman BA, Durisic N, Mativetsky JM, Costantino S, Hancock MA, Grutter P, Shoubridge EA (2007) The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Mol Biol Cell 18:3225–3236

    PubMed  CAS  Google Scholar 

  • Keefe DL, Niven-Fairchild T, Powell S, Buradagunta S (1995) Mitochondrial deoxyribonucleic acid deletions in oocytes and reproductive aging in women. Fertil Steril 64:577–583

    PubMed  CAS  Google Scholar 

  • Kirby DM, Boneh A, Chow CW, Ohtake A, Ryan MT, Thyagarajan D, Thorburn DR (2003) Low mutant load of mitochondrial DNA G13513A mutation can cause Leigh’s disease. Ann Neurol 54:473–478

    PubMed  CAS  Google Scholar 

  • Kobayashi Y, Momoi MY, Tominaga K, Momoi T, Nihei K, Yanagisawa M, Kagawa Y, Ohta S (1990) A point mutation in the mitochondrial tRNA(Leu)(UUR) gene in MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes). Biochem Biophys Res Commun 173:816–822

    PubMed  CAS  Google Scholar 

  • Kondo R, Satta Y, Matsuura ET, Ishiwa H, Takahata N, Chigusa SI (1990) Incomplete maternal transmission of mitochondrial DNA in Drosophila. Genetics 126:657–663

    PubMed  CAS  Google Scholar 

  • Kraytsberg Y, Schwartz M, Brown TA, Ebralidse K, Kunz WS, Clayton DA, Vissing J, Khrapko K (2004) Recombination of human mitochondrial DNA. Science 304:981

    PubMed  CAS  Google Scholar 

  • Kucej M, Butow RA (2007) Evolutionary tinkering with mitochondrial nucleoids. Trends Cell Biol 17:586–592

    PubMed  CAS  Google Scholar 

  • Kvist L, Martens J, Nazarenko AA, Orell M (2003) Paternal leakage of mitochondrial DNA in the great tit (Parus major). Mol Biol Evol 20:243–247

    PubMed  CAS  Google Scholar 

  • Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M, Barsh GS, Clayton DA (1998) Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 18:231–236

    PubMed  CAS  Google Scholar 

  • Lee JH, Peters A, Fisher P, Bowles EJ, St John JC, Campbell KH (2010) Generation of mtDNA homoplasmic cloned lambs. Cell Reprogram 12:347–355

    PubMed  CAS  Google Scholar 

  • Lee S, Kim S, Sun X, Lee JH, Cho H (2007) Cell cycle-dependent mitochondrial biogenesis and dynamics in mammalian cells. Biochem Biophys Res Commun 357:111–117

    PubMed  Google Scholar 

  • Lestienne P, Reynier P, Chrétien MF, Penisson-Besnier I, Malthièry Y, Rohmer V (1997) Oligoasthenospermia associated with multiple mitochondrial DNA rearrangements. Mol Hum Reprod 3:811–814

    PubMed  CAS  Google Scholar 

  • Liu H, Wang CW, Grifo JA, Krey LC, Zhang J (1999) Reconstruction of mouse oocytes by germinal vesicle transfer: maturity of host oocyte cytoplasm determines meiosis. Hum Reprod 14:2357–2361

    PubMed  CAS  Google Scholar 

  • Lloyd RE, Lee JH, Alberio R, Bowles EJ, Ramalho-Santos J, Campbell KH, St John JC (2006) Aberrant nucleo-cytoplasmic cross-talk results in donor cell mtDNA persistence in cloned embryos. Genetics 172:2515–2527

    PubMed  CAS  Google Scholar 

  • Manwaring N, Jones MM, Wang JJ, Rochtchina E, Howard C, Mitchell P, Sue CM (2007) Population prevalence of the MELAS A3243G mutation. Mitochondrion 7:230–233

    PubMed  CAS  Google Scholar 

  • Marchington DR, Hartshorne GM, Barlow D, Poulton J (1997) Homopolymeric tract heteroplasmy in mtDNA from tissues and single oocytes: support for a genetic bottleneck. Am J Hum Genet 60:408–416

    PubMed  CAS  Google Scholar 

  • May-Panloup P, Vignon X, Chrétien MF, Heyman Y, Tamassia M, Malthièry Y, Reynier P (2005a) Increase of mitochondrial DNA content and transcripts in early bovine embryogenesis associated with upregulation of mtTFA and NRF1 transcription factors. Reprod Biol Endocrinol 3:65

    PubMed  Google Scholar 

  • May-Panloup P, Chrétien MF, Jacques C, Vasseur C, Malthièry Y, Reynier P (2005b) Low oocyte mitochondrial DNA content in ovarian insufficiency. Hum Reprod 20:593–597

    PubMed  CAS  Google Scholar 

  • McKenzie M, Trounce I (2000) Expression of Rattus norvegicus mtDNA in Mus musculus cells results in multiple respiratory chain defects. J Biol Chem 275:31514–31519

    PubMed  CAS  Google Scholar 

  • McKenzie M, Chiotis M, Pinkert CA, Trounce IA (2003) Functional respiratory chain analyses in murid xenomitochondrial cybrids expose coevolutionary constraints of cytochrome b and nuclear subunits of complex III. Mol Biol Evol 20:1117–1124

    PubMed  CAS  Google Scholar 

  • Meirelles FV, Smith LC (1997) Mitochondrial genotype segregation in a mouse heteroplasmic lineage produced by embryonic karyoplast transplantation. Genetics 145:445–451

    PubMed  CAS  Google Scholar 

  • Meirelles FV, Bordignon V, Watanabe Y, Watanabe M, Dayan A, Lôbo RB, Garcia JM, Smith LC (2001) Complete replacement of the mitochondrial genotype in a Bos indicus calf reconstructed by nuclear transfer to a Bos taurus oocyte. Genetics 158:351–356

    PubMed  CAS  Google Scholar 

  • Meusel MS, Moritz RF (1993) Transfer of paternal mitochondrial DNA during fertilization of honeybee (Apis mellifera L.) eggs. Curr Genet 24:539–543

    PubMed  CAS  Google Scholar 

  • Miller FJ, Rosenfeldt FL, Zhang C, Linnane AW, Nagley P (2003) Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age. Nucleic Acids Res 31:e61

    PubMed  Google Scholar 

  • Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14 (Spec No 1):R47–R58

    PubMed  CAS  Google Scholar 

  • Moyes CD, Battersby BJ, Leary SC (1998) Regulation of muscle mitochondrial design. J Exp Biol 201:299–307

    CAS  Google Scholar 

  • Nagao Y, Totsuka Y, Atomi Y, Kaneda H, Lindahl KF, Imai H, Yonekawa H (1998) Decreased physical performance of congenic mice with mismatch between the nuclear and the mitochondrial genome. Genes Genet Syst 73:21–27

    PubMed  CAS  Google Scholar 

  • Nishimura Y, Yoshinari T, Naruse K, Yamada T, Sumi K, Mitani H, Higashiyama T, Kuroiwa T (2006) Active digestion of sperm mitochondrial DNA in single living sperm revealed by optical tweezers. Proc Natl Acad Sci USA 103:1382–1387

    PubMed  CAS  Google Scholar 

  • Otani H, Tanaka O, Kasai K, Yoshioka T (1988) Development of mitochondrial helical sheath in the middle piece of the mouse spermatid tail: regular dispositions and synchronized changes. Anat Rec 222:26–33

    PubMed  CAS  Google Scholar 

  • Ozawa T (1995) Mechanism of somatic mitochondrial DNA mutations associated with age and diseases. Biochim Biophys Acta 1271:177–189

    PubMed  Google Scholar 

  • Pavili L, Daudin M, Moinard N, Walschaerts M, Cuzin L, Massip P, Pasquier C, Bujan L (2010) Decrease of mitochondrial DNA level in sperm from patients infected with human immunodeficiency virus-1 linked to nucleoside analogue reverse transcriptase inhibitors. Fertil Steril 94:2151–2156

    PubMed  CAS  Google Scholar 

  • Pfeiffer T, Schuster S, Bonhoeffer S (2001) Cooperation and competition in the evolution of ATP-producing pathways. Science 292:504–507

    PubMed  CAS  Google Scholar 

  • Pikó L, Taylor KD (1987) Amounts of mitochondrial DNA and abundance of some mitochondrial gene transcripts in early mouse embryos. Dev Biol 123:364–374

    PubMed  Google Scholar 

  • Reynier P, Chrétien MF, Penisson-Besnier I, Malthièry Y, Rohmer V, Lestienne P (1997) Male infertility associated with multiple mitochondrial DNA rearrangements. C R Acad Sci III 320:629–636

    PubMed  CAS  Google Scholar 

  • Reynier P, Chrétien MF, Savagner F, Larcher G, Rohmer V, Barrière P, Malthièry Y (1998) Long PCR analysis of human gamete mtDNA suggests defective mitochondrial maintenance in spermatozoa and supports the bottleneck theory for oocytes. Biochem Biophys Res Commun 252:373–377

    PubMed  CAS  Google Scholar 

  • Reynier P, May-Panloup P, Chrétien MF, Morgan CJ, Jean M, Savagner F, Barrière P, Malthièry Y (2001) Mitochondrial DNA content affects the fertilizability of human oocytes. Mol Hum Reprod 7:425–429

    PubMed  CAS  Google Scholar 

  • Ruiz-Pesini E, Lapeña AC, Díez-Sánchez C, Pérez-Martos A, Montoya J, Alvarez E, Díaz M, Urriés A, Montoro L, López-Pérez MJ, Enríquez JA (2000) Human mtDNA haplogroups associated with high or reduced spermatozoa motility. Am J Hum Genet 67:682–696

    PubMed  CAS  Google Scholar 

  • Sacconi S, Salviati L, Nishigaki Y, Walker WF, Hernandez-Rosa E, Trevisson E, Delplace S, Desnuelle C, Shanske S, Hirano M, Schon EA, Bonilla E, De Vivo DC, DiMauro S, Davidson MM (2008) A functionally dominant mitochondrial DNA mutation. Hum Mol Genet 17:1814–1820

    PubMed  CAS  Google Scholar 

  • Santos TA, El Shourbagy S, St John JC (2006) Mitochondrial content reflects oocyte variability and fertilization outcome. Fertil Steril 85:584–591

    PubMed  CAS  Google Scholar 

  • Satoh M, Kuroiwa T (1991) Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell. Exp Cell Res 196:137–140

    PubMed  CAS  Google Scholar 

  • Schaefer AM, McFarland R, Blakely EL, He L, Whittaker RG, Taylor RW, Chinnery PF, Turnbull DM (2008) Prevalence of mitochondrial DNA disease in adults. Ann Neurol 63:35–39

    PubMed  CAS  Google Scholar 

  • Schon EA, Rizzuto R, Moraes CT, Nakase H, Zeviani M, DiMauro S (1989) A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA. Science 244:346–349

    PubMed  CAS  Google Scholar 

  • Schwartz M, Vissing J (2002) Paternal inheritance of mitochondrial DNA. N Engl J Med 347:576–580

    PubMed  Google Scholar 

  • Shadel GS, Clayton DA (1997) Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem 66:409–435

    PubMed  CAS  Google Scholar 

  • Shitara H, Kaneda H, Sato A, Inoue K, Ogura A, Yonekawa H, Hayashi JI (2000) Selective and continuous elimination of mitochondria microinjected into mouse eggs from spermatids, but not from liver cells, occurs throughout embryogenesis. Genetics 156:1277–1284

    PubMed  CAS  Google Scholar 

  • Shoffner JM, Lott MT, Lezza AM, Seibel P, Ballinger SW, Wallace DC (1990) Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell 61:931–937

    PubMed  CAS  Google Scholar 

  • Smith LC, Alcivar AA (1993) Cytoplasmic inheritance and its effects on development and performance. J Reprod Fertil Suppl 48:31–43

    PubMed  CAS  Google Scholar 

  • Song GJ, Lewis V (2008) Mitochondrial DNA integrity and copy number in sperm from infertile men. Fertil Steril 90:2238–2244

    PubMed  CAS  Google Scholar 

  • Sousa Lopes SM de, Roelen BA (2010) An overview on the diversity of cellular organelles during the germ cell cycle. Histol Histopathol 25:267–276

    PubMed  Google Scholar 

  • Spikings EC, Alderson J, St John JC (2007) Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development. Biol Reprod 76:327–335

    PubMed  CAS  Google Scholar 

  • Spiropoulos J, Turnbull DM, Chinnery PF (2002) Can mitochondrial DNA mutations cause sperm dysfunction? Mol Hum Reprod 8:719–721

    PubMed  CAS  Google Scholar 

  • St John JC, Campbell KH (2010) The battle to prevent the transmission of mitochondrial DNA disease: is karyoplast transfer the answer? Gene Ther 17:147–149

    PubMed  CAS  Google Scholar 

  • St John JC, Schatten G (2004) Paternal mitochondrial DNA transmission during nonhuman primate nuclear transfer. Genetics 167:897–905

    PubMed  CAS  Google Scholar 

  • St John J, Sakkas D, Dimitriadi K, Barnes A, Maclin V, Ramey J, Barratt C, De Jonge C (2000) Failure of elimination of paternal mitochondrial DNA in abnormal embryos. Lancet 355:200

    PubMed  CAS  Google Scholar 

  • St John JC, Jokhi RP, Barratt CL (2001) Men with oligoasthenoteratozoospermia harbour higher numbers of multiple mitochondrial DNA deletions in their spermatozoa, but individual deletions are not indicative of overall aetiology. Mol Hum Reprod 7:103–111

    PubMed  CAS  Google Scholar 

  • St John JC, Lloyd RE, Bowles EJ, Thomas EC, El Shourbagy S (2004) The consequences of nuclear transfer for mammalian foetal development and offspring survival. A mitochondrial DNA perspective. Reproduction 127:631–641

    PubMed  CAS  Google Scholar 

  • St John JC, Moffatt O, D’Souza N (2005) Aberrant heteroplasmic transmission of mtDNA in cloned pigs arising from double nuclear transfer. Mol Reprod Dev 72:450–460

    PubMed  CAS  Google Scholar 

  • St John JC, Facucho-Oliveira J, Jiang Y, Kelly R, Salah R (2010) Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells. Hum Reprod Update 16:488–509

    PubMed  CAS  Google Scholar 

  • Steinborn R, Zakhartchenko V, Wolf E, Müller M, Brem G (1998) Non-balanced mix of mitochondrial DNA in cloned cattle produced by cytoplast-blastomere fusion. FEBS Lett 426:357–361

    PubMed  CAS  Google Scholar 

  • Steinborn R, Schinogl P, Wells DN, Bergthaler A, Müller M, Brem G (2002) Coexistence of Bos taurus and B. indicus mitochondrial DNAs in nuclear transfer-derived somatic cattle clones. Genetics 162:823–829

    PubMed  CAS  Google Scholar 

  • Steuerwald N, Barritt JA, Adler R, Malter H, Schimmel T, Cohen J, Brenner CA (2000) Quantification of mtDNA in single oocytes, polar bodies and subcellular components by real-time rapid cycle fluorescence monitored PCR. Zygote 8:209–215

    PubMed  CAS  Google Scholar 

  • Stewart JB, Freyer C, Elson JL, Wredenberg A, Cansu Z, Trifunovic A, Larsson NG (2008) Strong purifying selection in transmission of mammalian mitochondrial DNA. PLoS Biol 6:e10

    PubMed  Google Scholar 

  • Sutarno, Cummins JM, Greeff J, Lymbery AJ (2002) Mitochondrial DNA polymorphisms and fertility in beef cattle. Theriogenology 57:1603–1610

    PubMed  CAS  Google Scholar 

  • Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G (1999) Ubiquitin tag for sperm mitochondria. Nature 402:371–372

    PubMed  CAS  Google Scholar 

  • Tachibana M, Sparman M, Sritanaudomchai H, Ma H, Clepper L, Woodward J, Li Y, Ramsey C, Kolotushkina O, Mitalipov S (2009) Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature 461:367–372

    PubMed  CAS  Google Scholar 

  • Takeda K, Akagi S, Kaneyama K, Kojima T, Takahashi S, Imai H, Yamanaka M, Onishi A, Hanada H (2003) Proliferation of donor mitochondrial DNA in nuclear transfer calves (Bos taurus) derived from cumulus cells. Mol Reprod Dev 64:429–437

    PubMed  CAS  Google Scholar 

  • Takeda K, Tasai M, Iwamoto M, Akita T, Tagami T, Nirasawa K, Hanada H, Onishi A (2006) Transmission of mitochondrial DNA in pigs and progeny derived from nuclear transfer of Meishan pig fibroblast cells. Mol Reprod Dev 73:306–312

    PubMed  CAS  Google Scholar 

  • Tamassia M, Nuttinck F, May-Panloup P, Reynier P, Heyman Y, Charpigny G, Stojkovic M, Hiendleder S, Renard JP, Chastant-Maillard S (2004) In vitro embryo production efficiency in cattle and its association with oocyte adenosine triphosphate content, quantity of mitochondrial DNA, and mitochondrial DNA haplogroup. Biol Reprod 71:697–704

    PubMed  CAS  Google Scholar 

  • Thundathil J, Filion F, Smith LC (2005) Molecular control of mitochondrial function in preimplantation mouse embryos. Mol Reprod Dev 71:405–413

    PubMed  CAS  Google Scholar 

  • Trounce I (2000) Genetic control of oxidative phosphorylation and experimental models of defects. Hum Reprod 15 (Suppl 2):18–27

    PubMed  Google Scholar 

  • Tsai HD, Hsieh YY, Hsieh JN, Chang CC, Yang CY, Yang JG, Cheng WL, Tsai FJ, Liu CS (2010) Mitochondria DNA deletion and copy numbers of cumulus cells associated with in vitro fertilization outcomes. J Reprod Med 55:491–497

    PubMed  CAS  Google Scholar 

  • Ursing BM, Arnason U (1998) The complete mitochondrial DNA sequence of the pig (Sus scrofa). J Mol Evol 47:302–306

    PubMed  CAS  Google Scholar 

  • Van Blerkom J (2004) Mitochondria in human oogenesis and preimplantation embryogenesis: engines of metabolism, ionic regulation and developmental competence. Reproduction 128:269–280

    PubMed  Google Scholar 

  • Van Blerkom J, Davis P, Alexander S (2000) Differential mitochondrial distribution in human pronuclear embryos leads to disproportionate inheritance between blastomeres: relationship to microtubular organization, ATP content and competence. Hum Reprod 15:2621–2633

    PubMed  Google Scholar 

  • Vandebona H, Mitchell P, Manwaring N, Griffiths K, Gopinath B, Wang JJ, Sue CM (2009) Prevalence of mitochondrial 1555A→G mutation in adults of European descent. N Engl J Med 360:642–644

    PubMed  CAS  Google Scholar 

  • Wai T, Teoli D, Shoubridge EA (2008) The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat Genet 40:1484–1488

    PubMed  CAS  Google Scholar 

  • Wallace DC (2007) Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine. Annu Rev Biochem 76:781–821

    PubMed  CAS  Google Scholar 

  • Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, Lezza AM, Elsas LJ 2nd, Nikoskelainen EK (1988) Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 242:1427–1430

    PubMed  CAS  Google Scholar 

  • Wang MK, Chen DY, Liu JL, Li GP, Sun QY (2001) In vitro fertilisation of mouse oocytes reconstructed by transfer of metaphase II chromosomes results in live births. Zygote 9:9–14

    PubMed  Google Scholar 

  • Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    PubMed  CAS  Google Scholar 

  • Yang CX, Han ZM, Wen DC, Sun QY, Zhang KY, Zhang LS, Wu YQ, Kou ZH, Chen DY (2003) In vitro development and mitochondrial fate of macaca-rabbit cloned embryos. Mol Reprod Dev 65:396–401

    PubMed  CAS  Google Scholar 

  • Zhao X, Li N, Guo W, Hu X, Liu Z, Gong G, Wang A, Feng J, Wu C (2004) Further evidence for paternal inheritance of mitochondrial DNA in the sheep (Ovis aries). Heredity (Edinb) 93:399–403

    CAS  Google Scholar 

  • Zouros E, Freeman KR, Ball AO, Pogson GH (1992) Direct evidence for extensive paternal mitochondrial DNA inheritance in the marine mussel Mytilus. Nature 359:412–414

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Professor Justin St John would like to acknowledge the support of the Victorian Government’s Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin C. St John.

Rights and permissions

Reprints and permissions

About this article

Cite this article

St John, J.C. Transmission, inheritance and replication of mitochondrial DNA in mammals: implications for reproductive processes and infertility. Cell Tissue Res 349, 795–808 (2012). https://doi.org/10.1007/s00441-012-1444-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1444-2

Keywords

Navigation