Skip to main content
Log in

Chemokines in CNS injury and repair

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Recruitment of inflammatory cells is known to drive the secondary damage cascades that are common to injuries of the central nervous system (CNS). Cell activation and infiltration to the injury site is orchestrated by changes in the expression of chemokines, the chemoattractive cytokines. Reducing the numbers of recruited inflammatory cells by the blocking of the action of chemokines has turned out be a promising approach to diminish neuroinflammation and to improve tissue preservation and neovascularization. In addition, several chemokines have been shown to be essential for stem/progenitor cell attraction, their survival, differentiation and cytokine production. Thus, chemokines might indirectly participate in remyelination, neovascularization and neuroprotection, which are important prerequisites for CNS repair after trauma. Moreover, CXCL12 promotes neurite outgrowth in the presence of growth inhibitory CNS myelin and enhances axonal sprouting after spinal cord injury (SCI). Here, we review current knowledge about the exciting functions of chemokines in CNS trauma, including SCI, traumatic brain injury and stroke. We identify common principles of chemokine action and discuss the potentials and challenges of therapeutic interventions with chemokines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Angiolillo AL, Sgadari C, Taub DD, Liao F, Farber JM, Maheshwari S, Kleinman HK, Reaman GH, Tosato G (1995) Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J Exp Med 182:155–162

    PubMed  CAS  Google Scholar 

  • Antonelli A, Rotondi M, Fallahi P, Ferrari SM, Paolicchi A, Romagnani P, Serio M, Ferrannini E (2006) Increase of CXC chemokine CXCL10 and CC chemokine CCL2 serum levels in normal ageing. Cytokine 34:32–38

    PubMed  CAS  Google Scholar 

  • Bachstetter AD, Morganti JM, Jernberg J, Schlunk A, Mitchell SH, Brewster KW, Hudson CE, Cole MJ, Harrison JK, Bickford PC, Gemma C (2009) Fractalkine and CX(3)CR1 regulate hippocampal neurogenesis in adult and aged rats. Neurobiol Aging 32:2030–2044

    PubMed  PubMed Central  Google Scholar 

  • Bagaeva LV, Rao P, Powers JM, Segal BM (2006) CXC chemokine ligand 13 plays a role in experimental autoimmune encephalomyelitis. J Immunol 176:7676–7685

    PubMed  CAS  Google Scholar 

  • Bakondi B, Shimada IS, Peterson BM, Spees JL (2011) SDF-1α secreted by human CD133-derived multipotent stromal cells promotes neural progenitor cell survival through CXCR7. Stem Cells Dev 20:1021–1029

    PubMed  CAS  PubMed Central  Google Scholar 

  • Balashov KE, Rottman JB, Weiner HL, Hancock WW (1999) CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1alpha and IP-10 are expressed in demyelinating brain lesions. Proc Natl Acad Sci USA 96:6873–6878

    PubMed  CAS  PubMed Central  Google Scholar 

  • Banisadr G, Fontanges P, Haour F, Kitabgi P, Rostène W, Melik Parsadaniantz S (2002) Neuroanatomical distribution of CXCR4 in adult rat brain and its localization in cholinergic and dopaminergic neurons. Eur J Neurosci 16:1661–1671

    PubMed  Google Scholar 

  • Banisadr G, Gosselin RD, Mechighel P, Kitabgi P, Rostène W, Parsadaniantz SM (2005) Highly regionalized neuronal expression of monocyte chemoattractant protein-1 (MCP-1/CCL2) in rat brain: evidence for its colocalization with neurotransmitters and neuropeptides. J Comp Neurol 489:275–292

    PubMed  CAS  Google Scholar 

  • Barbaria EM, Kohl B, Buhren BA, Hasenpusch-Theil K, Kruse F, Kury P, Martini R, Muller HW (2009) The alpha-chemokine CXCL14 is up-regulated in the sciatic nerve of a mouse model of Charcot-Marie-Tooth disease type 1A and alters myelin gene expression in cultured Schwann cells. Neurobiol Dis 33:448–458

    PubMed  CAS  Google Scholar 

  • Bartholdi D, Schwab ME (1997) Expression of pro-inflammatory cytokine and chemokine mRNA upon experimental spinal cord injury in mouse: an in situ hybridization study. Eur J Neurosci 9:1422–1438

    PubMed  CAS  Google Scholar 

  • Baune BT, Ponath G, Golledge J, Varga G, Arolt V, Rothermundt M, Berger K (2008) Association between IL-8 cytokine and cognitive performance in an elderly general population—the MEMO-Study. Neurobiol Aging 29:937–944

    PubMed  CAS  Google Scholar 

  • Beech JS, Reckless J, Mosedale DE, Grainger DJ, Williams SC, Menon DK (2001) Neuroprotection in ischemia-reperfusion injury: an antiinflammatory approach using a novel broad-spectrum chemokine inhibitor. J Cereb Blood Flow Metab 21:683–689

    PubMed  CAS  Google Scholar 

  • Benton RL, Maddie MA, Worth CA, Mahoney ET, Hagg T, Whittemore SR (2008) Transcriptomic screening of microvascular endothelial cells implicates novel molecular regulators of vascular dysfunction after spinal cord injury. J Cereb Blood Flow Metab 28:1771–1785

    PubMed  CAS  PubMed Central  Google Scholar 

  • Berman JW, Guida MP, Warren J, Amat J, Brosnan CF (1996) Localization of monocyte chemoattractant peptide-1 expression in the central nervous system in experimental autoimmune encephalomyelitis and trauma in the rat. J Immunol 156:3017–3023

    PubMed  CAS  Google Scholar 

  • Bhattacharyya BJ, Banisadr G, Jung H, Ren D, Cronshaw DG, Zou Y, Miller RJ (2008) The chemokine stromal cell-derived factor-1 regulates GABAergic inputs to neural progenitors in the postnatal dentate gyrus. J Neurosci 28:6720–6730

    PubMed  CAS  PubMed Central  Google Scholar 

  • Biber K, Sauter A, Brouwer N, Copray SC, Boddeke HW (2001) Ischemia-induced neuronal expression of the microglia attracting chemokine secondary lymphoid-tissue chemokine (SLC). Glia 34:121–133

    PubMed  CAS  Google Scholar 

  • Biber K, Tsuda M, Tozaki-Saitoh H, Tsukamoto K, Toyomitsu E, Masuda T, Boddeke H, Inoue K (2011) Neuronal CCL21 up-regulates microglia P2X4 expression and initiates neuropathic pain development. EMBO J 30:1864–1873

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bodnar RJ, Yates CC, Rodgers ME, Du X, Wells A (2009) IP-10 induces dissociation of newly formed blood vessels. J Cell Sci 122:2064–2077

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bogoslovsky T, Spatz M, Chaudhry A, Maric D, Luby M, Frank J, Warach S (2011) Stromal-derived factor-1[alpha] correlates with circulating endothelial progenitor cells and with acute lesion volume in stroke patients. Stroke 42:618–625

    PubMed  CAS  Google Scholar 

  • Brait VH, Rivera J, Broughton BR, Lee S, Drummond GR, Sobey CG (2010) Chemokine-related gene expression in the brain following ischemic stroke: no role for CXCR2 in outcome. Brain Res 1372:169–179

    PubMed  Google Scholar 

  • Braunersreuther V, Zernecke A, Arnaud C, Liehn EA, Steffens S, Shagdarsuren E, Bidzhekov K, Burger F, Pelli G, Luckow B, Mach F, Weber C (2007) Ccr5 but not Ccr1 deficiency reduces development of diet-induced atherosclerosis in mice. Arterioscler Thromb Vasc Biol 27:373–379

    PubMed  CAS  Google Scholar 

  • Cai D, Deng K, Mellado W, Lee J, Ratan RR, Filbin MT (2002) Arginase I and polyamines act downstream from cyclic AMP in overcoming inhibition of axonal growth MAG and myelin in vitro. Neuron 35:711–719

    PubMed  CAS  Google Scholar 

  • Campbell SJ, Wilcockson DC, Butchart AG, Perry VH, Anthony DC (2002) Altered chemokine expression in the spinal cord and brain contributes to differential interleukin-1beta-induced neutrophil recruitment. J Neurochem 83:432–441

    PubMed  CAS  Google Scholar 

  • Campbell SJ, Perry VH, Pitossi FJ, Butchart AG, Chertoff M, Waters S, Dempster R, Anthony DC (2005) Central nervous system injury triggers hepatic CC and CXC chemokine expression that is associated with leukocyte mobilization and recruitment to both the central nervous system and the liver. Am J Pathol 166:1487–1497

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd G, Dombrowski S, Dutta R, Lee JC, Cook DN, Jung S, Lira SA, Littman DR, Ransohoff RM (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9:917–924

    PubMed  CAS  Google Scholar 

  • Chalasani SH, Sabelko KA, Sunshine MJ, Littman DR, Raper JA (2003) A chemokine, SDF-1, reduces the effectiveness of multiple axonal repellents and is required for normal axon pathfinding. J Neurosci 23:1360–1371

    PubMed  CAS  Google Scholar 

  • Che X, Ye W, Panga L, Wu DC, Yang GY (2001) Monocyte chemoattractant protein-1 expressed in neurons and astrocytes during focal ischemia in mice. Brain Res 902:171–177

    PubMed  CAS  Google Scholar 

  • Chen J, Mo R, Lescure PA, Misek DE, Hanash S, Rochford R, Hobbs M, Yung RL (2003a) Aging is associated with increased T-cell chemokine expression in C57BL/6 mice. J Gerontol A Biol Sci Med Sci 58:975–983

    PubMed  Google Scholar 

  • Chen Y, Hallenbeck JM, Ruetzler C, Bol D, Thomas K, Berman NE, Vogel SN (2003b) Overexpression of monocyte chemoattractant protein 1 in the brain exacerbates ischemic brain injury and is associated with recruitment of inflammatory cells. J Cereb Blood Flow Metab 23:748–755

    PubMed  Google Scholar 

  • Cheng SS, Lai JJ, Lukacs NW, Kunkel SL (2001) Granulocyte-macrophage colony stimulating factor up-regulates CCR1 in human neutrophils. J Immunol 166:1178–1184

    PubMed  CAS  Google Scholar 

  • Chevigne A, Fievez V, Schmit JC, Deroo S (2011) Engineering and screening the N-terminus of chemokines for drug discovery. Biochem Pharmacol 82:1438–1456

    PubMed  CAS  Google Scholar 

  • Coughlan CM, McManus CM, Sharron M, Gao Z, Murphy D, Jaffer S, Choe W, Chen W, Hesselgesser J, Gaylord H, Kalyuzhny A, Lee VM, Wolf B, Doms RW, Kolson DL (2000) Expression of multiple functional chemokine receptors and monocyte chemoattractant protein-1 in human neurons. Neuroscience 97:591–600

    PubMed  CAS  Google Scholar 

  • Cowell RM, Xu H, Galasso JM, Silverstein FS (2002) Hypoxic-ischemic injury induces monocyte inflammatory protein-1alpha expression in immature rat brain. Stroke 33:795–801

    PubMed  CAS  Google Scholar 

  • Cui X, Chen J, Zacharek A, Li Y, Roberts C, Kapke A, Savant-Bhonsale S, Chopp M (2007) Nitric oxide donor upregulation of stromal cell-derived factor-1/chemokine (CXC motif) receptor 4 enhances bone marrow stromal cell migration into ischemic brain after stroke. Stem Cells 25:2777–2785

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dalgard CL, Cole JT, Kean WS, Lucky JJ, Sukumar G, McMullen DC, Pollard HB, Watson WD (2012) The cytokine temporal profile in rat cortex after controlled cortical impact. Front Mol Neurosci 5:6

    PubMed  CAS  PubMed Central  Google Scholar 

  • David S, Kroner A (2011) Repertoire of microglial andmonocyte responses after spinal cord injury. Nat Rev Neurosci 12:388–399

    PubMed  CAS  Google Scholar 

  • Delgado-Martín C, Escribano C, Pablos JL, Riol-Blanco L, Rodríguez-Fernández JL (2011) Chemokine CXCL12 uses CXCR4 and a signaling core formed by bifunctional Akt, extracellular signal-regulated kinase (ERK)1/2, and mammalian target of rapamycin complex 1 (mTORC1) proteins to control chemotaxis and survival simultaneously in mature dendritic cells. J Biol Chem 286:37222–37236

    PubMed  PubMed Central  Google Scholar 

  • Haas AH de, Weering HR van, Jong EK de, Boddeke HW, Biber KP (2007) Neuronal chemokines: versatile messengers in central nervous system cell interaction. Mol Neurobiol 36:137–151

    PubMed  PubMed Central  Google Scholar 

  • de Jong EK de, Dijkstra IM, Hensens M, Brouwer N, Amerongen M van, Liem RS, Boddeke HW, Biber K (2005) Vesicle-mediated transport and release of CCL21 in endangered neurons: a possible explanation for microglia activation remote from a primary lesion. J Neurosci 25:7548–7557

    PubMed  Google Scholar 

  • de Jong EK de, Vinet J, Stanulovic VS, Meijer M, Wesseling E, Sjollema K, Boddeke HW, Biber K (2008) Expression, transport, and axonal sorting of neuronal CCL21 in large dense-core vesicles. FASEB J 22:4136–4145

    PubMed  Google Scholar 

  • Denes A, Ferenczi S, Halasz J, Kornyei Z, Kovacs KJ (2008) Role of CX3CR1 (fractalkine receptor) in brain damage and inflammation induced by focal cerebral ischemia in mouse. J Cereb Blood Flow Metab 28:1707–1721

    PubMed  CAS  Google Scholar 

  • Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 29:313–326

    PubMed  CAS  PubMed Central  Google Scholar 

  • Devalaraja RM, Nanney LB, Du J, Qian Q, Yu Y, Devalaraja MN, Richmond A (2000) Delayed wound healing in CXCR2 knockout mice. J Invest Dermatol 115:234–244

    PubMed  CAS  PubMed Central  Google Scholar 

  • DeVries M, Kelvin A, Xu L, Ran L, Robinson J, Kelvin D (2006) Defining the origins and evolution of the chemokine/chemokine receptor system. J Immunol 176:401–415

    PubMed  CAS  Google Scholar 

  • Dimitrijevic OB, Stamatovic SM, Keep RF, Andjelkovic AV (2007) Absence of the chemokine receptor CCR2 protects against cerebral ischemia/reperfusion injury in mice. Stroke 38:1345–1353

    PubMed  CAS  Google Scholar 

  • Donnelly D, Longbrake E, Shawler T, Kigerl K, Lai W, Tovar A, Ransohoff R, Popovich P (2011) Deficient CX3CR1 signaling promotes recovery after mouse spinal cord injury by limiting the recruitment and activation of Ly6Clo/iNOS+ monocytes. J Neurosci 31:9910–9922

    PubMed  CAS  PubMed Central  Google Scholar 

  • Eisman R, Surrey S, Ramachandran B, Schwartz E, Poncz M (1990) Structural and functional comparison of the genes for human platelet factor 4 and PF4alt. Blood 76:336–344

    PubMed  CAS  Google Scholar 

  • Eugenin EA, D'Aversa TG, Lopez L, Calderon TM, Berman JW (2003) MCP-1 (CCL2) protects human neurons and astrocytes from NMDA or HIV-tat-induced apoptosis. J Neurochem 85:1299–1311

    PubMed  CAS  Google Scholar 

  • Fan Y, Shen F, Frenzel T, Zhu W, Ye J, Liu J, Chen Y, Su H, Young WL, Yang GY (2010) Endothelial progenitor cell transplantation improves long-term stroke outcome in mice. Ann Neurol 67:488–497

    PubMed  CAS  PubMed Central  Google Scholar 

  • Felzien LK, McDonald JT, Gleason SM, Berman NE, Klein RM (2001) Increased chemokine gene expression during aging in the murine brain. Brain Res 890:137–146

    PubMed  CAS  Google Scholar 

  • Fimmel S, Devermann L, Herrmann A, Zouboulis C (2007) GRO-alpha: a potential marker for cancer and aging silenced by RNA interference. Ann N Y Acad Sci 1119:176–189

    PubMed  CAS  Google Scholar 

  • Fransen S, Copeland KF, Smieja M, Smaill F, Rosenthal KL (2000) RANTES production by T cells and CD8-mediated inhibition of human immunodeficiency virus gene expression before initiation of potent antiretroviral therapy predict sustained suppression of viral replication. J Infect Dis 181:505–512

    PubMed  CAS  Google Scholar 

  • Fukumoto N, Shimaoka T, Fujimura H, Sakoda S, Tanaka M, Kita T, Yonehara S (2004) Critical roles of CXC chemokine ligand 16/scavenger receptor that binds phosphatidylserine and oxidized lipoprotein in the pathogenesis of both acute and adoptive transfer experimental autoimmune encephalomyelitis. J Immunol 173:1620–1627

    PubMed  CAS  Google Scholar 

  • Genovese T, Mazzon E, Di Paola R, Crisafulli C, Muià C, Bramanti P, Cuzzocrea S (2006) Increased oxidative-related mechanisms in the spinal cord injury in old rats. Neurosci Lett 393:141–146

    PubMed  CAS  Google Scholar 

  • Ghersa P, Gelati M, Colinge J, Feger G, Power C, Ghersa P, Gelati M, Colinge J, Feger G, Power C, Papoian R, Salmaggi A (2002) MIG–differential gene expression in mouse brain endothelial cells. Neuroreport 13:9–14

    PubMed  CAS  Google Scholar 

  • Ghirnikar RS, Lee YL, Eng LF (2000) Chemokine antagonist infusion attenuates cellular infiltration following spinal cord contusion injury in rat. J Neurosci Res 59:63–73

    PubMed  CAS  Google Scholar 

  • Ghirnikar RS, Lee YL, Eng LF (2001) Chemokine antagonist infusion promotes axonal sparing after spinal cord contusion injury in rat. J Neurosci Res 64:582–589

    PubMed  CAS  Google Scholar 

  • Glabinski AR, Balasingam V, Tani M, Kunkel SL, Strieter RM, Yong VW, Ransohoff RM (1996) Chemokine monocyte chemoattractant protein-1 is expressed by astrocytes after mechanical injury to the brain. J Immunol 156:4363–4368

    PubMed  CAS  Google Scholar 

  • Glaser J, Gonzalez R, Perreau V, Cotman C, Keirstead H (2004) Neutralization of the chemokine CXCL10 enhances tissue sparing and angiogenesis following spinal cord injury. J Neurosci Res 77:701–708

    PubMed  CAS  Google Scholar 

  • Glaser J, Gonzalez R, Sadr E, Keirstead H (2006) Neutralization of the chemokine CXCL10 reduces apoptosis and increases axon sprouting after spinal cord injury. J Neurosci Res 84:724–734

    PubMed  CAS  Google Scholar 

  • Gonzalez R, Glaser J, Liu MT, Lane TE, Keirstead HS (2003) Reducing inflammation decreases secondary degeneration and functional deficit after spinal cord injury. Exp Neurol 184:456–463

    PubMed  CAS  Google Scholar 

  • Gosselin RD, Varela C, Banisadr G, Mechighel P, Rostène W, Kitabgi P, Melik-Parsadaniantz S (2005) Constitutive expression of CCR2 chemokine receptor and inhibition by MCP-1/CCL2 of GABA-induced currents in spinal cord neurones. J Neurochem 95:1023–1034

    PubMed  CAS  Google Scholar 

  • Gottle P, Kremer D, Jander S, Odemis V, Engele J, Hartung HP, Kury P (2010) Activation of CXCR7 receptor promotes oligodendroglial cell maturation. Ann Neurol 68:915–924

    PubMed  Google Scholar 

  • Gourmala NG, Buttini M, Limonta S, Sauter A, Boddeke HW (1997) Differential and time-dependent expression of monocyte chemoattractant protein-1 mRNA by astrocytes and monocytes in rat brain: effects of ischemia and peripheral lipopolysaccharide administration. J Neuroimmunol 74:35–44

    PubMed  CAS  Google Scholar 

  • Gouwy M, Struyf S, Catusse J, Proost P, Van Damme J (2004) Synergy between proinflammatory ligands of G protein-coupled receptors in neutrophil activation and migration. J Leukoc Biol 76:185–194

    PubMed  CAS  Google Scholar 

  • Grau AJ, Reis A, Buggle F, Al-Khalaf A, Werle E, Valois N, Bertram M, Becher H, Grond-Ginsbach C (2001) Monocyte function and plasma levels of interleukin-8 in acute ischemic stroke. J Neurol Sci 192:41–47

    PubMed  CAS  Google Scholar 

  • Guyon A, Skrzydelski D, De Giry I, Rovere C, Conductier G, Trocello JM, Dauge V, Kitabgi P, Rostène W, Nahon JL, Melik Parsadaniantz S (2009) Long term exposure to the chemokine CCL2 activates the nigrostriatal dopamine system: a novel mechanism for the control of dopamine release. Neuroscience 162:1072–1080

    PubMed  CAS  Google Scholar 

  • Harkness KA, Sussman JD, Davies-Jones GA, Greenwood J, Woodroofe MN (2003) Cytokine regulation of MCP-1 expression in brain and retinal microvascular endothelial cells. J Neuroimmunol 142:1–9

    PubMed  CAS  Google Scholar 

  • Harrison JK, Jiang Y, Chen S, Xia Y, Maciejewski D, McNamara RK, Streit WJ, Salafranca MN, Adhikari S, Thompson DA, Botti P, Bacon KB, Feng L (1998) Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci USA 95:10896–10901

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hau S, Reich DM, Scholz M, Naumann W, Emmrich F, Kamprad M, Boltze J (2008) Evidence for neuroprotective properties of human umbilical cord blood cells after neuronal hypoxia in vitro. BMC Neurosci 9:30

    PubMed  PubMed Central  Google Scholar 

  • Hawthorne AL, Popovich PG (2011) Emerging concepts in myeloid cell biology after spinal cord injury. Neurotherapeutics 8:252–261

    PubMed  PubMed Central  Google Scholar 

  • Helmy A, Carpenter KL, Menon DK, Pickard JD, Hutchinson PJ (2011) The cytokine response to human traumatic brain injury: temporal profiles and evidence for cerebral parenchymal production. J Cereb Blood Flow Metab 31:658–670

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hill WD, Hess DC, Martin-Studdard A, Carothers JJ, Zheng J, Hale D, Maeda M, Fagan SC, Carroll JE, Conway SJ (2004) SDF-1 (CXCL12) is upregulated in the ischemic penumbra following stroke: association with bone marrow cell homing to injury. J Neuropathol Exp Neurol 63:84–96

    PubMed  CAS  Google Scholar 

  • Hinojosa AE, Garcia-Bueno B, Leza JC, Madrigal JL (2011) CCL2/MCP-1 modulation of microglial activation and proliferation. J Neuroinflammation 8:77

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hirose K, Okajima K, Taoka Y, Uchiba M, Tagami H, Nakano K, Utoh J, Okabe H, Kitamura N (2000) Activated protein C reduces the ischemia/reperfusion-induced spinal cord injury in rats by inhibiting neutrophil activation. Ann Surg 232:272–280

    PubMed  CAS  PubMed Central  Google Scholar 

  • Horuk R, Martin AW, Wang Z, Schweitzer L, Gerassimides A, Guo H, Lu Z, Hesselgesser J, Perez HD, Kim J, Parker J, Hadley TJ, Peiper SC (1997) Expression of chemokine receptors by subsets of neurons in the central nervous system. J Immunol 158:2882–2890

    PubMed  CAS  Google Scholar 

  • Hosking MP, Tirotta E, Ransohoff RM, Lane TE (2010) CXCR2 signaling protects oligodendrocytes and restricts demyelination in a mouse model of viral-induced demyelination. PloS one 5:e11340

    PubMed  PubMed Central  Google Scholar 

  • Hughes PM, Allegrini PR, Rudin M, Perry VH, Mir AK, Wiessner C (2002) Monocyte chemoattractant protein-1 deficiency is protective in a murine stroke model. J Cereb Blood Flow Metab 22:308–317

    PubMed  CAS  Google Scholar 

  • Hurwitz AA, Lyman WD, Berman JW (1995) Tumor necrosis factor alpha and transforming growth factor beta upregulate astrocyte expression of monocyte chemoattractant protein-1. J Neuroimmunol 57:193–198

    PubMed  CAS  Google Scholar 

  • Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, Frenkel D, Li J, Sidman RL, Walsh CA, Snyder EY, Khoury SJ (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA 101:18117–18122

    PubMed  CAS  PubMed Central  Google Scholar 

  • Inadera H, Egashira K, Takemoto M, Ouchi Y, Matsushima K (1999) Increase in circulating levels of monocyte chemoattractant protein-1 with aging. J Inteferon Cytokine Res 19:1179–1182

    CAS  Google Scholar 

  • Jaerve A, Schiwy N, Schmitz C, Mueller HW (2011) Differential effect of aging on axon sprouting and regenerative growth in spinal cord injury. Exp Neurol 231:284–294

    PubMed  CAS  Google Scholar 

  • Jiang L, Newman M, Saporta S, Chen N, Sanberg C, Sanberg PR, Willing AE (2008) MIP-1alpha and MCP-1 induce migration of human umbilical cord blood cells in models of stroke. Curr Neurovasc Res 5:118–124

    PubMed  CAS  Google Scholar 

  • Jones TB, Hart RP, Popovich PG (2005) Molecular control of physiological and pathological T-cell recruitment after mouse spinal cord injury. J Neurosci 25:6576–6583

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kang J, Jiang MH, Min HJ, Jo EK, Lee S, Karin M, Yune TY, Lee SJ (2011) IKK-beta-mediated myeloid cell activation exacerbates inflammation and inhibits recovery after spinal cord injury. Eur J Immunol 41:1266–1277

    PubMed  CAS  Google Scholar 

  • Kavanagh RJ, Kam PC (2001) Lazaroids: efficacy and mechanism of action of the 21-aminosteroids in neuroprotection. Br J Anaesth 86:110–119

    PubMed  CAS  Google Scholar 

  • Keeley EC, Mehrad B, Strieter RM (2010) Chemokines as mediators of tumor angiogenesis and neovascularization. Exp Cell Res 317:685–690

    PubMed  PubMed Central  Google Scholar 

  • Kerstetter AE, Padovani-Claudio DA, Bai L, Miller RH (2009) Inhibition of CXCR2 signaling promotes recovery in models of multiple sclerosis. Exp Neurol 220:44–56

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kiguchi N, Kobayashi Y, Maeda T, Saika F, Kishioka S (2010) CC-chemokine MIP-1alpha in the spinal cord contributes to nerve injury-induced neuropathic pain. Neurosci Lett 484:17–21

    PubMed  CAS  Google Scholar 

  • Kim JS, Gautam SC, Chopp M, Zaloga C, Jones ML, Ward PA, Welch KM (1995) Expression of monocyte chemoattractant protein-1 and monocyte inflammatory protein-1 after focal cerebral ischemia in the rat. J Neuroimmunol 56:127–134

    PubMed  CAS  Google Scholar 

  • Kim JV, Jiang N, Tadokoro CE, Liu L, Ransohoff RM, Lafaille JJ, Dustin ML (2009) Two-photon laser scanning microscopy imaging of intact spinal cord and cerebral cortex reveals requirement for CXCR6 and neuroinflammation in immune cell infiltration of cortical injury sites. J Immunol Methods 352:89–100

    PubMed  PubMed Central  Google Scholar 

  • Kim HO, Kim HS, Youn JC, Shin EC, Park S (2011) Serum cytokine profiles in healthy young and elderly population assessed using multiplexed bead-based immunoassays. J Transl Med 9:113

    PubMed  CAS  PubMed Central  Google Scholar 

  • Knerlich-Lukoschus F, Ropp-Brenner B von der, Lucius R, Mehdorn HM, Held-Feindt J (2010) Chemokine expression in the white matter spinal cord precursor niche after force-defined spinal cord contusion injuries in adult rats. Glia 58:916–931

    PubMed  Google Scholar 

  • Kostulas N, Kivisakk P, Huang Y, Matusevicius D, Kostulas V, Link H (1998) Ischemic stroke is associated with a systemic increase of blood mononuclear cells expressing interleukin-8 mRNA. Stroke 29:462–466

    PubMed  CAS  Google Scholar 

  • Kremer KN, Clift IC, Miamen AG, Bamidele AO, Qian NX, Humphreys TD, Hedin KE (2011) Stromal cell-derived factor-1 signaling via the CXCR4-TCR heterodimer requires phospholipase C-β3 and phospholipase C-γ1 for distinct cellular responses. J Immunol 187:1440–1447

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kumamaru H, Saiwai H, Ohkawa Y, Yamada H, Iwamoto Y, Okada S (2011) Age-related differences in cellular and molecular profiles of inflammatory responses after spinal cord injury. J Cell Physiol 227:1335–1346

    Google Scholar 

  • Kunihara T, Sasaki S, Shiiya N, Ishikura H, Kawarada Y, Matsukawa A, Yasuda K (2000) Lazaroid reduces production of IL-8 and IL-1 receptor antagonist in ischemic spinal cord injury. Ann Thorac Surg 69:792–798

    PubMed  CAS  Google Scholar 

  • Kwon BK, Stammers AM, Belanger LM, Bernardo A, Chan D, Bishop CM, Slobogean GP, Zhang H, Umedaly H, Giffin M, Street J, Boyd MC, Paquette SJ, Fisher CG, Dvorak MF (2010) Cerebrospinal fluid inflammatory cytokines and biomarkers of injury severity in acute human spinal cord injury. J Neurotrauma 27:669–682

    PubMed  Google Scholar 

  • Lalor SJ, Segal BM (2010) Lymphoid chemokines in the CNS. J Neuroimmunol 224:56–61

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee YL, Shih K, Bao P, Ghirnikar RS, Eng LF (2000) Cytokine chemokine expression in contused rat spinal cord. Neurochem Int 36:417–425

    PubMed  CAS  Google Scholar 

  • Li M, Yu J, Li Y, Li D, Yan D, Qu Z, Ruan Q (2009) CXCR4 positive bone mesenchymal stem cells migrate to human endothelial cell stimulated by ox-LDL via SDF-1alpha/CXCR4 signaling axis. Exp Mol Pathol 88:250–255

    PubMed  Google Scholar 

  • Lindner M, Trebst C, Heine S, Skripuletz T, Koutsoudaki PN, Stangel M (2008) The chemokine receptor CXCR2 is differentially regulated on glial cells in vivo but is not required for successful remyelination after cuprizone-induced demyelination. Glia 56:1104–1113

    PubMed  Google Scholar 

  • Loh SA, Chang EI, Galvez MG, Thangarajah H, El-ftesi S, Vial IN, Lin DA, Gurtner GC (2009) SDF-1 alpha expression during wound healing in the aged is HIF dependent. Plast Reconstr Surg 123:65S–75S

    PubMed  CAS  Google Scholar 

  • Losy J, Zaremba J (2001) Monocyte chemoattractant protein-1 is increased in the cerebrospinal fluid of patients with ischemic stroke. Stroke 32:2695–2696

    PubMed  CAS  Google Scholar 

  • Losy J, Zaremba J, Skrobanski P (2005) CXCL1 (GRO-alpha) chemokine in acute ischaemic stroke patients. Folia Neuropathol 43:97–102

    PubMed  CAS  Google Scholar 

  • Ludwig A, Weber C (2007) Transmembrane chemokines: versatile “special agents” in vascular inflammation. Thromb Haemost 97:694–703

    PubMed  CAS  Google Scholar 

  • Ludwig A, Schulte A, Schnack C, Hundhausen C, Reiss K, Brodway N, Held-Feindt J, Mentlein R (2005) Enhanced expression and shedding of the transmembrane chemokine CXCL16 by reactive astrocytes and glioma cells. J Neurochem 93:1293–1303

    PubMed  CAS  Google Scholar 

  • Luster AD, Greenberg SM, Leder P (1995) The IP-10 chemokine binds to a specific cell surface heparan sulfate site shared with platelet factor 4 and inhibits endothelial cell proliferation. J Exp Med 182:219–231

    PubMed  CAS  Google Scholar 

  • Ma M, Wei T, Boring L, Charo IF, Ransohoff RM, Jakeman LB (2002) Monocyte recruitment and myelin removal are delayed following spinal cord injury in mice with CCR2 chemokine receptor deletion. J Neurosci Res 68:691–702

    PubMed  CAS  Google Scholar 

  • Mantovani A, Bonecchi R, Locati M (2006) Tuning inflammation and immunity by chemokine sequestration: decoys and more. Nat Rev Immunol 6:907–918

    PubMed  CAS  Google Scholar 

  • Matloubian M, David A, Engel S, Ryan JE, Cyster JG (2000) A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo. Nat Immunol 1:298–304

    PubMed  CAS  Google Scholar 

  • Matsumoto T, Yokoi K, Mukaida N, Harada A, Yamashita J, Watanabe Y, Matsushima K (1997) Pivotal role of interleukin-8 in the acute respiratory distress syndrome and cerebral reperfusion injury. J Leukoc Biol 62:581–587

    PubMed  CAS  Google Scholar 

  • McColl SR, Mahalingam S, Staykova M, Tylaska LA, Fisher KE, Strick CA, Gladue RP, Neote KS, Willenborg DO (2004) Expression of rat I-TAC/CXCL11/SCYA11 during central nervous system inflammation: comparison with other CXCR3 ligands. Lab Invest 84:1418–1429

    PubMed  CAS  Google Scholar 

  • McTigue DM, Tani M, Krivacic K, Chernosky A, Kelner GS, Maciejewski D, Maki R, Ransohoff RM, Stokes BT (1998) Selective chemokine mRNA accumulation in the rat spinal cord after contusion injury. J Neurosci Res 53:368–376

    PubMed  CAS  Google Scholar 

  • Minami M, Satoh M (2003) Chemokines and their receptors in the brain: pathophysiological roles in ischemic brain injury. Life Sci 74:321–327

    PubMed  CAS  Google Scholar 

  • Mirabelli-Badenier M, Braunersreuther V, Viviani GL, Dallegri F, Quercioli A, Veneselli E, Mach F, Montecucco F (2011) CC and CXC chemokines are pivotal mediators of cerebral injury in ischaemic stroke. Thromb Haemost 105:409–420

    PubMed  CAS  Google Scholar 

  • Montecucco F, Steffens S, Burger F, Da Costa A, Bianchi G, Bertolotto M, Mach F, Dallegri F, Ottonello L (2008a) Tumor necrosis factor-alpha (TNF-alpha) induces integrin CD11b/CD18 (Mac-1) up-regulation and migration to the CC chemokine CCL3 (MIP-1alpha) on human neutrophils through defined signaling pathways. Cell Signal 20:557–568

    PubMed  CAS  Google Scholar 

  • Montecucco F, Steffens S, Burger F, Pelli G, Monaco C, Mach F (2008b) C-reactive protein (CRP) induces chemokine secretion via CD11b/ICAM-1 interaction in human adherent monocytes. J Leukoc Biol 84:1109–1119

    PubMed  CAS  Google Scholar 

  • Mortier A, Gouwy M, Van Damme J, Proost P (2011) Effect of posttranslational processing on the in vitro and in vivo activity of chemokines. Exp Cell Res 317:642–654

    PubMed  CAS  Google Scholar 

  • Müller M, Carter SL, Hofer MJ, Manders P, Getts DR, Getts MT, Dreykluft A, Lu B, Gerard C, King NJ, Campbell IL (2007) CXCR3 signaling reduces the severity of experimental autoimmune encephalomyelitis by controlling the parenchymal distribution of effector and regulatory T cells in the central nervous system. J Immunol 179:2774–2786

    PubMed  Google Scholar 

  • Muessel MJ, Klein RM, Wilson AM, Berman NE (2002) Ablation of the chemokine monocyte chemoattractant protein-1 delays retrograde neuronal degeneration, attenuates microglial activation, and alters expression of cell death molecules. Brain Res Mol Brain Res 103:12–27

    PubMed  CAS  Google Scholar 

  • Naumann U, Cameroni E, Pruenster M, Mahabaleshwar H, Raz E, Zerwes HG, Rot A, Thelen M (2010) CXCR7 functions as a scavenger for CXCL12 and CXCL11. PLoS One 5:e9175

    PubMed  PubMed Central  Google Scholar 

  • Neves SR, Ram PT, Iyengar R (2002) G protein pathways. Science 296:1636–1639

    PubMed  CAS  Google Scholar 

  • Njemini R, Bautmans I, Lambert M, Demanet C, Mets T (2007) Heat shock proteins and chemokine/cytokine secretion profile in ageing and inflammation. Mech Ageing Dev 128:450–454

    PubMed  CAS  Google Scholar 

  • Omari KM, John G, Lango R, Raine CS (2006) Role for CXCR2 and CXCL1 on glia in multiple sclerosis. Glia 53:24–31

    PubMed  Google Scholar 

  • Omari KM, Lutz SE, Santambrogio L, Lira SA, Raine CS (2009) Neuroprotection and remyelination after autoimmune demyelination in mice that inducibly overexpress CXCL1. Am J Pathol 174:164–176

    PubMed  CAS  PubMed Central  Google Scholar 

  • Opatz J, Kury P, Schiwy N, Jarve A, Estrada V, Brazda N, Bosse F, Muller HW (2009) SDF-1 stimulates neurite growth on inhibitory CNS myelin. Mol Cell Neurosci 40:293–300

    PubMed  CAS  Google Scholar 

  • Ormstad H, Aass HC, Lund-Sorensen N, Amthor KF, Sandvik L (2011) Serum levels of cytokines and C-reactive protein in acute ischemic stroke patients, and their relationship to stroke lateralization, type, and infarct volume. J Neurol 258:677–685

    PubMed  CAS  PubMed Central  Google Scholar 

  • Patel JR, McCandless EE, Dorsey D, Klein RS (2010) CXCR4 promotes differentiation of oligodendrocyte progenitors and remyelination. Proc Natl Acad Sci USA 107:11062–11067

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pillay J, Braber I den, Vrisekoop N, Kwast LM, Boer RJ de, Borghans JA, Tesselaar K, Koenderman L (2010) In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood 116:625–627

    PubMed  CAS  Google Scholar 

  • Pineau I, Sun L, Bastien D, Lacroix S (2009) Astrocytes initiate inflammation in the injured mouse spinal cord by promoting the entry of neutrophils and inflammatory monocytes in an IL-1 receptor/MyD88-dependent fashion. Brain Behav Immun 24:540–553

    PubMed  Google Scholar 

  • Proudfoot AE, Power CA, Schwarz MK (2010) Anti-chemokine small molecule drugs: a promising future? Expert Opin Investig Drugs 19:345–355

    PubMed  CAS  Google Scholar 

  • Pujol F, Kitabgi P, Boudin H (2005) The chemokine SDF-1 differentially regulates axonal elongation and branching in hippocampal neurons. J Cell Sci 118:1071–1080

    PubMed  CAS  Google Scholar 

  • Rainey-Barger EK, Rumble JM, Lalor SJ, Esen N, Segal BM, Irani DN (2010) The lymphoid chemokine, CXCL13, is dispensable for the initial recruitment of B cells to the acutely inflamed central nervous system. Brain Behav Immun 25:922–931

    PubMed  PubMed Central  Google Scholar 

  • Rancan M, Bye N, Otto VI, Trentz O, Kossmann T, Frentzel S, Morganti-Kossmann MC (2004) The chemokine fractalkine in patients with severe traumatic brain injury and a mouse model of closed head injury. J Cereb Blood Flow Metab 24:1110–1118

    PubMed  CAS  Google Scholar 

  • Rappert A, Bechmann I, Pivneva T, Mahlo J, Biber K, Nolte C, Kovac AD, Gerard C, Boddeke HW, Nitsch R, Kettenmann H (2004) CXCR3-dependent microglial recruitment is essential for dendrite loss after brain lesion. J Neurosci 24:8500–8509

    PubMed  CAS  Google Scholar 

  • Reale M, Di Giulio C, Cacchio M, Barbacane RC, Grilli A, Felaco M, Bianchi G, Di Gioacchino M, Conti P (2003) Oxygen supply modulates MCP-1 release in monocytes from young and aged rats: decrease of MCP-1 transcription and translation is age-related. Mol Cell Biochem 248:1–6

    PubMed  CAS  Google Scholar 

  • Reichel CA, Rehberg M, Lerchenberger M, Berberich N, Bihari P, Khandoga AG, Zahler S, Krombach F (2009) Ccl2 and Ccl3 mediate neutrophil recruitment via induction of protein synthesis and generation of lipid mediators. Arterioscler Thromb Vasc Biol 29:1787–1793

    PubMed  CAS  Google Scholar 

  • Rice T, Larsen J, Rivest S, Yong VW (2007) Characterization of the early neuroinflammation after spinal cord injury in mice. J Neuropathol Exp Neurol 66:184–195

    PubMed  CAS  Google Scholar 

  • Robin AM, Zhang ZG, Wang L, Zhang RL, Katakowski M, Zhang L, Wang Y, Zhang C, Chopp M (2006) Stromal cell-derived factor 1alpha mediates neural progenitor cell motility after focal cerebral ischemia. J Cereb Blood Flow Metab 26:125–134

    PubMed  CAS  Google Scholar 

  • Rose JJ, Foley JF, Murphy PM, Venkatesan S (2004) On the mechanism and significance of ligand-induced internalization of human neutrophil chemokine receptors CXCR1 and CXCR2. J Biol Chem 279:24372–24386

    PubMed  CAS  Google Scholar 

  • Rostène W, Kitabgi P, Parsadaniantz SM (2007) Chemokines: a new class of neuromodulator? Nat Rev Neurosci 8:895–903

    PubMed  Google Scholar 

  • Salanga CL, Handel TM (2011) Chemokine oligomerization and interactions with receptors and glycosaminoglycans: the role of structural dynamics in function. Exp Cell Res 317:590–601

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sanchez-Alcaniz JA, Haege S, Mueller W, Pla R, Mackay F, Schulz S, Lopez-Bendito G, Stumm R, Marin O (2011) Cxcr7 controls neuronal migration by regulating chemokine responsiveness. Neuron 69:77–90

    PubMed  CAS  Google Scholar 

  • Schönemeier B, Kolodziej A, Schulz S, Jacobs S, Hoellt V, Stumm R (2008) Regional and cellular localization of the CXCl12/SDF-1 chemokine receptor CXCR7 in the developing and adult rat brain. J Comp Neurol 510:207–220

    PubMed  Google Scholar 

  • Seidler S, Zimmermann HW, Bartneck M, Trautwein C, Tacke F (2010) Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults. BMC Immunol 11:30

    PubMed  PubMed Central  Google Scholar 

  • Semple BD, Bye N, Ziebell JM, Morganti-Kossmann MC (2010) Deficiency of the chemokine receptor CXCR2 attenuates neutrophil infiltration and cortical damage following closed head injury. Neurobiol Dis 40:394–403

    PubMed  CAS  Google Scholar 

  • Shahrara S, Park CC, Temkin V, Jarvis JW, Volin MV, Pope RM (2006) RANTES modulates TLR4-induced cytokine secretion in human peripheral blood monocytes. J Immunol 177:5077–5087

    PubMed  CAS  Google Scholar 

  • Shannon LA, Calloway PA, Welch TP, Vines CM (2010) CCR7/CCL21 migration on fibronectin is mediated by phospholipase Cgamma1 and ERK1/2 in primary T lymphocytes. J Biol Chem 285:38781–38787

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shurin GV, Yurkovetsky ZR, Chatta GS, Tourkova IL, Shurin MR, Lokshin AE (2007) Dynamic alteration of soluble serum biomarkers in healthy aging. Cytokine 39:123–129

    PubMed  CAS  Google Scholar 

  • Shyu WC, Lin SZ, Yen PS, Su CY, Chen DC, Wang HJ, Li H (2008a) Stromal cell-derived factor-1 alpha promotes neuroprotection, angiogenesis, and mobilization/homing of bone marrow-derived cells in stroke rats. J Pharmacol Exp Ther 324:834–849

    PubMed  CAS  Google Scholar 

  • Shyu WC, Liu DD, Lin SZ, Li WW, Su CY, Chang YC, Wang HJ, Wang HW, Tsai CH, Li H (2008b) Implantation of olfactory ensheathing cells promotes neuroplasticity in murine models of stroke. J Clin Invest 118:2482–2495

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sørensen TL, Tani M, Jensen J, Pierce V, Lucchinetti C, Folcik VA, Qin S, Rottman J, Sellebjerg F, Strieter RM, Frederiksen JL, Ransohoff RM (1999) Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 103:807–815

    PubMed  PubMed Central  Google Scholar 

  • Sorce S, Bonnefont J, Julien S, Marq-Lin N, Rodriguez I, Dubois-Dauphin M, Krause KH (2010) Increased brain damage after ischaemic stroke in mice lacking the chemokine receptor CCR5. Br J Pharmacol 160:311–321

    PubMed  CAS  PubMed Central  Google Scholar 

  • Soriano SG, Amaravadi LS, Wang YF, Zhou H, Yu GX, Tonra JR, Fairchild-Huntress V, Fang Q, Dunmore JH, Huszar D, Pan Y (2002) Mice deficient in fractalkine are less susceptible to cerebral ischemia-reperfusion injury. J Neuroimmunol 125:59–65

    PubMed  CAS  Google Scholar 

  • Sozzani S, Zhou D, Locati M, Rieppi M, Proost P, Magazin M, Vita N, Damme J van, Mantovani A (1994) Receptors and transduction pathways for monocyte chemotactic protein-2 and monocyte chemotactic protein-3. Similarities and differences with MCP-1. J Immunol 152:3615–3622

    PubMed  CAS  Google Scholar 

  • Spitzbarth I, Bock P, Haist V, Stein VM, Tipold A, Wewetzer K, Baumgartner W, Beineke A (2011) Prominent microglial activation in the early proinflammatory immune response in naturally occurring canine spinal cord injury. J Neuropathol Exp Neurol 70:703–714

    PubMed  Google Scholar 

  • Spleiss O, Appel K, Boddeke HW, Berger M, Gebicke-Haerter PJ (1998) Molecular biology of microglia cytokine and chemokine receptors and microglial activation. Life Sci 62:1707–1710

    PubMed  CAS  Google Scholar 

  • Stamatovic S, Shakui P, Keep R, Moore B, Kunkel S, Van Rooijen N, Andjelkovic A (2005) Monocyte chemoattractant protein-1 regulation of blood-brain barrier permeability. J Cereb Blood Flow Metab 25:593–606

    PubMed  CAS  Google Scholar 

  • Staniland AA, Clark AK, Wodarski R, Sasso O, Maione F, D'Acquisto F, Malcangio M (2010) Reduced inflammatory and neuropathic pain and decreased spinal microglial response in fractalkine receptor (CX3CR1) knockout mice. J Neurochem 114:1143–1157

    PubMed  CAS  Google Scholar 

  • Stefini R, Catenacci E, Piva S, Sozzani S, Valerio A, Bergomi R, Cenzato M, Mortini P, Latronico N (2008) Chemokine detection in the cerebral tissue of patients with posttraumatic brain contusions. J Neurosurg 108:958–962

    PubMed  CAS  Google Scholar 

  • Stirling DP, Liu S, Kubes P, Yong VW (2009) Depletion of Ly6G/Gr-1 leukocytes after spinal cord injury in mice alters wound healing and worsens neurological outcome. J Neurosci 29:753-764

    PubMed  CAS  Google Scholar 

  • Strieter RM, Kunkel SL, Arenberg DA, Burdick MD, Polverini PJ (1995a) Interferon gamma-inducible protein 10 (IP-10), a member of the C-X-C chemokine family, is an inhibitor of angiogenesis. Biochem Biophys Res Commun 210:51–57

    PubMed  CAS  Google Scholar 

  • Strieter RM, Polverini PJ, Arenberg DA, Kunkel SL (1995b) The role of CXC chemokines as regulators of angiogenesis. Shock 4:155–160

    PubMed  CAS  Google Scholar 

  • Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, Burdick MD, Kasper J, Dzuiba J, Van Damme J, Walz A, Marriott D et al (1995c) The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 270:27348–27357

    PubMed  CAS  Google Scholar 

  • Stumm R, Höllt V (2007) CXC chemokine receptor 4 regulates neuronal migration and axonal pathfinding in the developing nervous system: implications for neuronal regeneration in the adult brain. J Mol Endocrinol 38:377–382

    PubMed  CAS  Google Scholar 

  • Stumm RK, Rummel J, Junker V, Culmsee C, Pfeiffer M, Krieglstein J, Höllt V, Schulz S (2002) A dual role for the SDF-1/CXCR4 chemokine receptor system in adult brain: isoform-selective regulation of SDF-1 expression modulates CXCR4-dependent neuronal plasticity and cerebral leukocyte recruitment after focal ischemia. J Neurosci 22:5865–5878

    PubMed  CAS  Google Scholar 

  • Szmydynger-Chodobska J, Strazielle N, Zink BJ, Ghersi-Egea JF, Chodobski A (2009) The role of the choroid plexus in neutrophil invasion after traumatic brain injury. J Cereb Blood Flow Metab 29:1503–1516

    PubMed  CAS  PubMed Central  Google Scholar 

  • Takami S, Nishikawa H, Minami M, Nishiyori A, Sato M, Akaike A, Satoh M (1997) Induction of monocyte inflammatory protein MIP-1alpha mRNA on glial cells after focal cerebral ischemia in the rat. Neurosci Lett 227:173–176

    PubMed  CAS  Google Scholar 

  • Takami S, Minami M, Nagata I, Namura S, Satoh M (2001) Chemokine receptor antagonist peptide, viral MIP-II, protects the brain against focal cerebral ischemia in mice. J Cereb Blood Flow Metab 21:1430–1435

    PubMed  CAS  Google Scholar 

  • Takeuchi H, Natsume A, Wakabayashi T, Aoshima C, Shimato S, Ito M, Ishii J, Maeda Y, Hara M, Kim S, Yoshida J (2007) Intravenously transplanted human neural stem cells migrate to the injured spinal cord in adult mice in an SDF-1- and HGF-dependent manner. Neurosci Lett 426:69–74

    PubMed  CAS  Google Scholar 

  • Tarkowski E, Rosengren L, Blomstrand C, Wikkelso C, Jensen C, Ekholm S, Tarkowski A (1997) Intrathecal release of pro- and anti-inflammatory cytokines during stroke. Clin Exp Immunol 110:492–499

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tatara Y, Ohishi M, Yamamoto K, Shiota A, Hayashi N, Iwamoto Y, Takeda M, Takagi T, Katsuya T, Ogihara T, Rakugi H (2009) Monocyte inflammatory protein-1beta induced cell adhesion with increased intracellular reactive oxygen species. J Mol Cell Cardiol 47:104–111

    PubMed  CAS  Google Scholar 

  • Terao S, Yilmaz G, Stokes KY, Russell J, Ishikawa M, Kawase T, Granger DN (2008) Blood cell-derived RANTES mediates cerebral microvascular dysfunction, inflammation, and tissue injury after focal ischemia-reperfusion. Stroke 39:2560–2570

    PubMed  CAS  PubMed Central  Google Scholar 

  • Terao Y, Ohta H, Oda A, Nakagaito Y, Kiyota Y, Shintani Y (2009) Monocyte inflammatory protein-3alpha plays a key role in the inflammatory cascade in rat focal cerebral ischemia. Neurosci Res 64:75–82

    PubMed  CAS  Google Scholar 

  • Thibeault I, Laflamme N, Rivest S (2001) Regulation of the gene encoding the monocyte chemoattractant protein 1 (MCP-1) in the mouse and rat brain in response to circulating LPS and proinflammatory cytokines. J Comp Neurol 434:461–477

    PubMed  CAS  Google Scholar 

  • Thirumangalakudi L, Yin L, Rao HV, Grammas P (2007) IL-8 induces expression of matrix metalloproteinases, cell cycle and pro-apoptotic proteins, and cell death in cultured neurons. J Alzheimers Dis 11:305–311

    PubMed  CAS  Google Scholar 

  • Tripathy D, Thirumangalakudi L, Grammas P (2010a) RANTES upregulation in the Alzheimer’s disease brain: a possible neuroprotective role. Neurobiol Aging 31:8–16

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tripathy D, Yin X, Sanchez A, Luo J, Martinez J, Grammas P (2010b) Cerebrovascular expression of proteins related to inflammation, oxidative stress and neurotoxicity is altered with aging. J Neuroinflammation 7:63

    PubMed  PubMed Central  Google Scholar 

  • Tsai HH, Frost E, To V, Robinson S, Ffrench-Constant C, Geertman R, Ransohoff RM, Miller RH (2002) The chemokine receptor CXCR2 controls positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration. Cell 110:373–383

    PubMed  CAS  Google Scholar 

  • Tysseling VM, Mithal D, Sahni V, Birch D, Jung H, Belmadani A, Miller RJ, Kessler JA (2011) SDF1 in the dorsal corticospinal tract promotes CXCR4+ cell migration after spinal cord injury. J Neuroinflammation 8:16

    PubMed  CAS  PubMed Central  Google Scholar 

  • Valerio A, Ferrario M, Martinez FO, Locati M, Ghisi V, Bresciani LG, Mantovani A, Spano P (2004) Gene expression profile activated by the chemokine CCL5/RANTES in human neuronal cells. J Neurosci Res 78:371–382

    PubMed  CAS  Google Scholar 

  • Van Steenwinckel J, Reaux-Le Goazigo A, Pommier B, Mauborgne A, Dansereau MA, Kitabgi P, Sarret P, Pohl M, Melik Parsadaniantz S (2011) CCL2 released from neuronal synaptic vesicles in the spinal cord is a major mediator of local inflammation and pain after peripheral nerve injury. J Neurosci 31:5865–5875

    PubMed  Google Scholar 

  • Villa P, Triulzi S, Cavalieri B, Di Bitondo R, Bertini R, Barbera S, Bigini P, Mennini T, Gelosa P, Tremoli E, Sironi L, Ghezzi P (2007) The interleukin-8 (IL-8/CXCL8) receptor inhibitor reparixin improves neurological deficits and reduces long-term inflammation in permanent and transient cerebral ischemia in rats. Mol Med 13:125–133

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wain JH, Kirby JA, Ali S (2002) Leucocyte chemotaxis: examination of mitogen-activated protein kinase and phosphoinositide 3-kinase activation by monocyte chemoattractant proteins-1, -2, -3 and -4. Clin Exp Immunol 127:436–444

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang J, Norcross M (2008) Dimerization of chemokine receptors in living cells: key to receptor function and novel targets for therapy. Drug Discov Today 13:625–632

    PubMed  CAS  Google Scholar 

  • Wang X, Ellison JA, Siren AL, Lysko PG, Yue TL, Barone FC, Shatzman A, Feuerstein GZ (1998) Prolonged expression of interferon-inducible protein-10 in ischemic cortex after permanent occlusion of the middle cerebral artery in rat. J Neurochem 71:1194–1204

    PubMed  CAS  Google Scholar 

  • Wang X, Li X, Yaish-Ohad S, Sarau HM, Barone FC, Feuerstein GZ (1999) Molecular cloning and expression of the rat monocyte chemotactic protein-3 gene: a possible role in stroke. Brain Res Mol Brain Res 71:304–312

    PubMed  CAS  Google Scholar 

  • Wang L, Li Y, Chen X, Chen J, Gautam SC, Xu Y, Chopp M (2002) MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture. Hematology 7:113–117

    PubMed  CAS  Google Scholar 

  • Wang Y, Deng Y, Zhou GQ (2008) SDF-1alpha/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model. Brain Res 1195:104–112

    PubMed  CAS  Google Scholar 

  • Watson K, Fan GH (2005) Monocyte inflammatory protein 2 inhibits beta-amyloid peptide (1-42)-mediated hippocampal neuronal apoptosis through activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling pathways. Mol Pharmacol 67:757–765

    PubMed  CAS  Google Scholar 

  • Weber C, Kraemer S, Drechsler M, Lue H, Koenen RR, Kapurniotu A, Zernecke A, Bernhagen J (2008) Structural determinants of MIF functions in CXCR2-mediated inflammatory and atherogenic leukocyte recruitment. Proc Natl Acad Sci USA 105:16278–16283

    PubMed  CAS  PubMed Central  Google Scholar 

  • Weiss N, Deboux C, Chaverot N, Miller F, Baron-Van Evercooren A, Couraud PO, Cazaubon S (2010) IL8 and CXCL13 are potent chemokines for the recruitment of human neural precursor cells across brain endothelial cells. J Neuroimmunol 223:131–134

    PubMed  CAS  Google Scholar 

  • Woollard KJ, Geissmann F (2010) Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol 7:77–86

    PubMed  PubMed Central  Google Scholar 

  • Worthmann H, Tryc AB, Goldbecker A, Ma YT, Tountopoulou A, Hahn A, Dengler R, Lichtinghagen R, Weissenborn K (2010) The temporal profile of inflammatory markers and mediators in blood after acute ischemic stroke differs depending on stroke outcome. Cerebrovasc Dis 30:85–92

    PubMed  CAS  Google Scholar 

  • Wu D, LaRosa GJ, Simon MI (1993) G protein-coupled signal transduction pathways for interleukin-8. Science 261:101–103

    PubMed  CAS  Google Scholar 

  • Wynne AM, Henry CJ, Huang Y, Cleland A, Godbout JP (2010) Protracted downregulation of CX3CR1 on microglia of aged mice after lipopolysaccharide challenge. Brain Behav Immun 24:1190–1201

    PubMed  CAS  PubMed Central  Google Scholar 

  • Xia MQ, Hyman BT (1999) Chemokines/chemokine receptors in the central nervous system and Alzheimer's disease. J Neurovirol 5:32–41

    PubMed  CAS  Google Scholar 

  • Xia M, Sui Z (2009) Recent developments in CCR2 antagonists. Expert Opin Ther Pat 19:295–303

    PubMed  CAS  Google Scholar 

  • Yamagami S, Tamura M, Hayashi M, Endo N, Tanabe H, Katsuura Y, Komoriya K (1999) Differential production of MCP-1 and cytokine-induced neutrophil chemoattractant in the ischemic brain after transient focal ischemia in rats. J Leukoc Biol 65:744–749

    PubMed  CAS  Google Scholar 

  • Yamasaki Y, Matsuo Y, Matsuura N, Onodera H, Itoyama Y, Kogure K (1995) Transient increase of cytokine-induced neutrophil chemoattractant, a member of the interleukin-8 family, in ischemic brain areas after focal ischemia in rats. Stroke 26:318–322

    PubMed  CAS  Google Scholar 

  • Yan YP, Sailor KA, Lang BT, Park SW, Vemuganti R, Dempsey RJ (2007) Monocyte chemoattractant protein-1 plays a critical role in neuroblast migration after focal cerebral ischemia. J Cereb Blood Flow Metab 27:1213–1224

    PubMed  CAS  Google Scholar 

  • Yong VW, Rivest S (2009) Taking advantage of the systemic immune system to cure brain diseases. Neuron 64:55–60

    PubMed  CAS  Google Scholar 

  • Zaremba J, Skrobanski P, Losy J (2006a) The level of chemokine CXCL5 in the cerebrospinal fluid is increased during the first 24 hours of ischaemic stroke and correlates with the size of early brain damage. Folia Morphol 65:1–5

    Google Scholar 

  • Zaremba J, Ilkowski J, Losy J (2006b) Serial measurements of levels of the chemokines CCL2, CCL3 and CCL5 in serum of patients with acute ischaemic stroke. Folia Neuropathol 44:282–289

    PubMed  CAS  Google Scholar 

  • Zhang L, Ran L, Garcia GE, Wang XH, Han S, Du J, Mitch WE (2009) Chemokine CXCL16 regulates neutrophil and monocyte infiltration into injured muscle, promoting muscle regeneration. Am J Pathol 175:2518–2527

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhao P, Waxman SG, Hains BC (2007) Modulation of thalamic nociceptive processing after spinal cord injury through remote activation of thalamic microglia by cysteine cysteine chemokine ligand 21. J Neurosci 27:8893–890

    PubMed  CAS  Google Scholar 

  • Zheng H, Shen CJ, Qiu FY, Zhao YB, Fu GS (2010) Stromal cell-derived factor 1alpha reduces senescence of endothelial progenitor subpopulation in lectin-binding and DiLDL-uptaking cell through telomerase activation and telomere elongation. J Cell Physiol 223:757–763

    PubMed  CAS  Google Scholar 

  • Zlotnik A, Yoshie O, Nomiyama H (2006) The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol 7:243

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Werner Müller.

Additional information

The authors gratefully acknowledge the financial support provided by the Deutsche Forschungsgemeinschaft (SFB 590/C2 and Research School 1033) and the Wings for Life Spinal Cord Research Foundation for research on the chemokine SDF-1/CXCL12.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaerve, A., Müller, H.W. Chemokines in CNS injury and repair. Cell Tissue Res 349, 229–248 (2012). https://doi.org/10.1007/s00441-012-1427-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1427-3

Keywords

Navigation