Skip to main content
Log in

Protective effects of the neuropeptide PACAP in diabetic retinopathy

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with highly potent neurotrophic and neuroprotective effects. PACAP and its receptors occur in the retina and PACAP has been applied in animal models of metabolic retinal disorders to reduce structural and functional damage. Furthermore, PACAP has been implicated as a potential anti-diabetic peptide. Our aim has been to investigate, by using a complex morphological, immunochemical and molecular biological approach, whether PACAP attenuates diabetic retinopathy. Diabetes was induced in rats with a single streptozotocin injection. PACAP was injected intravitreally into one eye (100 pmol) three times during the last week of a 3-week survival period. Retinas were processed for the following procedures: routine histology, immunohistochemistry (single and double labeling, whole-mount), quantitative reverse transcription with the polymerase chain reaction and Western blotting. Cone photoreceptors and dopaminergic amacrine and ganglion cells degenerated in diabetic retinas and glial fibrillary acidic protein were upregulated in Müller glial cells. The number of cones, the length of their outer segments and the cell number in the ganglion cell layer were decreased. PACAP ameliorated these structural changes. Moreover, PACAP increased the levels of PAC1-receptor and tyrosine-hydroxylase as detected by molecular biological methods. Thus, PACAP has significant protective effects in the diabetic retina. PACAP treatment attenuates neuronal cell loss in diabetic retinopathy, the protective effects of PACAP probably being mediated through the activation of PAC1-receptor. These results suggest that PACAP has a therapeutic potential in diabetic retinopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvarez Y, Chen K, Reynolds AL, Waghorne N, O'Connor JJ, Kennedy BN (2010) Predominant cone photoreceptor dysfunction in a hyperglycaemic model of non-proliferative diabetic retinopathy. Dis Model Mech 3:236–245

    Article  PubMed  CAS  Google Scholar 

  • Atlasz T, Szabadfi K, Kiss P, Racz B, Gallyas F, Tamas A, Gaal V, Marton Z, Gabriel R, Reglodi D (2010) Review of pituitary adenylate cyclase activating polypeptide in the retina: focus on the retinoprotective effects. Ann N Y Acad Sci 1200:128–139

    Article  PubMed  CAS  Google Scholar 

  • Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW (1998) Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest 102:783–791

    Article  PubMed  CAS  Google Scholar 

  • Brandies R, Yehuda S (2008) The possible role of retinal dopaminergic system in visual performance. Neurosci Biobehav Rev 32:611–656

    Article  PubMed  CAS  Google Scholar 

  • Brecha NC, Oyster CW, Takahashi ES (1984) Identification and characterization of tyrosine hydroxylase immunoreactive amacrine cells. Invest Ophthalmol Vis Sci 25:66–70

    PubMed  CAS  Google Scholar 

  • Cameron MA, Pozdeyev N, Vugler AA, Cooper H, Iuvone PM, Lucas RJ (2009) Light regulation of retinal dopamine that is independent of melanopsin phototransduction. Eur J Neurosci 29:761–767

    Article  PubMed  CAS  Google Scholar 

  • Castorina A, Giunta S, Mazzone V, Cardile V, D'Agata V (2010) Effects of PACAP and VIP on hyperglycemia-induced proliferation in murine microvascular endothelial cells. Peptides 31:2276–2283

    Article  PubMed  CAS  Google Scholar 

  • Dickinson T, Mitchell R, Robberecht P, Fleetwood-Walker SM (1999) The role of VIP/PACAP receptor subtypes in spinal somatosensory processing in rats with an experimental peripheral mononeuropathy. Neuropharmacology 38:167–180

    Article  PubMed  CAS  Google Scholar 

  • Engerman RL, Kern TS (1995) Retinopathy in animal models of diabetes. Diabetes Metab Rev 11:109–120

    Article  PubMed  CAS  Google Scholar 

  • Fernstrom MH, Volk EA, Fernstrom JD, Iuvone PM (1986) Effect of tyrosine administration on dopa accumulation in light- and dark-adapted retinas from normal and diabetic rats. Life Sci 39:2049–2057

    Article  PubMed  CAS  Google Scholar 

  • Fong DS, Aiello LP, Ferris FL 3rd, Klein R (2004) Diabetic retinopathy. Diabetes Care 27:2540–2553

    Article  PubMed  Google Scholar 

  • Gastinger MJ, Singh RS, Barber AJ (2006) Loss of cholinergic and dopaminergic amacrine cells in streptozotocin-diabetic rat and Ins2Akita-diabetic mouse retinas. Invest Ophthalmol Vis Sci 47:3143–3150

    Article  PubMed  Google Scholar 

  • Gastinger MJ, Kunselman AR, Conboy EE, Bronson SK, Barber AJ (2008) Dendrite remodeling and other abnormalities in the retinal ganglion cells of Ins2 Akita diabetic mice. Invest Ophthalmol Vis Sci 49:2635–2642

    Article  PubMed  Google Scholar 

  • Gustincich S, Feigenspan A, Wu DK, Koopman LJ, Raviola E (1997) Control of dopamine release in the retina: a transgenic approach to neural networks. Neuron 18:723–736

    Article  PubMed  CAS  Google Scholar 

  • Holopigian K, Greenstein VC, Seiple W, Hood DC, Carr RE (1997) Evidence for photoreceptor changes in patients with diabetic retinopathy. Invest Ophthalmol Vis Sci 38:2355–2365

    PubMed  CAS  Google Scholar 

  • Jeon CJ, Strettoi E, Masland RH (1998) The major cell populations of the mouse retina. J Neurosci 18:8936–8946

    PubMed  CAS  Google Scholar 

  • Kempen JH, O’Colmain BJ, Leske MC, Haffner SM, Klein R, Moss SE, Taylor HR, Hamman RF (2004) The prevalence of diabetic retinopathy among adults in the United States. Arch Ophthalmol 122:552–563

    Article  PubMed  Google Scholar 

  • Kurtenbach A, Mayser HM, Jägle H, Fritsche A, Zrenner E (2006) Hyperoxia, hyperglycemia, and photoreceptor sensitivity in normal and diabetic subjects. Vis Neurosci 23:651–661

    Article  PubMed  Google Scholar 

  • Li M, Maderdrut JL, Lertora JJ, Arimura A, Batuman V (2008) Renoprotection by pituitary adenylate cyclase-activating polypeptide in multiple myeloma and other kidney diseases. Regul Pept 145:24–32

    Article  PubMed  CAS  Google Scholar 

  • Lieth E, Barber AJ, Xu B, Dice C, Ratz MJ, Tanase D, Strother JM (1998) Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Diabetes 47:815–820

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Mameza MG, Lee YS, Eseonu CI, Yu CR, Kang Derwent JJ, Egwuagu CE (2008) Suppressors of cytokine-signaling proteins induce insulin resistance in the retina and promote survival of retinal cells. Diabetes 57:1651–1658

    Article  PubMed  CAS  Google Scholar 

  • MacNeil MA, Masland RH (1998) Extreme diversity among amacrine cells: implications for function. Neuron 20:971–982

    Article  PubMed  CAS  Google Scholar 

  • Mohamed Q, Gillies MC, Wong TY (2007) Management of diabetic retinopathy. A systematic review. JAMA 298:902–916

    Article  PubMed  CAS  Google Scholar 

  • Nishimura C, Kuriyama K (1985) Alterations in the retinal dopaminergic neuronal system in rats with streptozotocin-induced diabetes. J Neurochem 45:448–455

    Article  PubMed  CAS  Google Scholar 

  • Northington FK, Hamill RW, Banerjee SP (1985) Dopamine-stimulated adenylate cyclase and tyrosine hydroxylase in diabetic rat retina. Brain Res 337:151–154

    Article  PubMed  CAS  Google Scholar 

  • Park JW, Park SJ, Park SH, Kim KY, Chung JW, Chun MH, Oh SJ (2006) Up-regulated expression of neuronal nitric oxide synthase in experimental diabetic retina. Neurobiol Dis 21:43–49

    Article  PubMed  CAS  Google Scholar 

  • Park SH, Park JW, Park SJ, Kim KY, Chung JW, Chun MH, Oh SJ (2003) Apoptotic death of photoreceptors in the streptozotocin-induced diabetic rat retina. Diabetologia 46:1260–1268

    Article  PubMed  Google Scholar 

  • Phipps JA, Fletcher EL, Vingrys AJ (2004) Paired-flash identification of rod and cone dysfunction in the diabetic rat. Invest Ophthalmol Vis Sci 45:4592–4600

    Article  PubMed  Google Scholar 

  • Portha B, Levacher C, Picon L, Rosselin G (1974) Diabetogenic effect of streptozotocin in the rat during the perinatal period. Diabetes 23:889–895

    PubMed  CAS  Google Scholar 

  • Racz B, Gallyas F Jr, Kiss P, Toth G, Hegyi O, Gasz B, Borsiczky B, Ferencz A, Roth E, Tamas A, Lengvari I, Lubics A, Reglodi D (2006) The neuroprotective effects of PACAP in monosodium glutamate-induced retinal lesion involve inhibition of proapoptotic signaling pathways. Regul Pept 137:20–26

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Tanaka T, Nawa H, Usui T, Fukuchi T, Ikeda K, Abe H, Takei N (2004) Involvement of brain-derived neurotrophic factor in early retinal neuropathy of streptozotocin-induced diabetes in rats: therapeutic potential of brain-derived neurotrophic factor for dopaminergic amacrine cells. Diabetes 53:2412–2419

    Article  PubMed  CAS  Google Scholar 

  • Shen X, Zhong Y, Xie B, Cheng Y, Jiao Q (2010) Pigment epithelium derived factor as an anti-inflammatory factor against decrease of glutamine synthetase expression in retinal Müller cells under high glucose conditions. Graefes Arch Clin Exp Ophthalmol 248:1127–1136

    Article  PubMed  CAS  Google Scholar 

  • Shirao Y, Kawasaki K (1998) Electrical responses from diabetic retina. Prog Retin Eye Res 17:59–76

    Article  PubMed  CAS  Google Scholar 

  • Steinle JJ (2010) Topical administration of adrenergic receptor pharmaceutics and nerve growth factor. Clin Ophthalmol 4:605–610

    Article  PubMed  Google Scholar 

  • Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 50:537–546

    PubMed  CAS  Google Scholar 

  • Tamas A, Gabriel R, Racz B, Denes V, Kiss P, Lubics A, Lengvari I, Reglodi D (2004) Effects of pituitary adenylate cyclase activating polypeptide in retinal degeneration induced by monosodium-glutamate. Neurosci Lett 372:110–113

    Article  PubMed  CAS  Google Scholar 

  • Tao W (2006) Application of encapsulated cell technology for retinal degenerative diseases. Expert Opin Biol Ther 6:717–726

    Article  PubMed  CAS  Google Scholar 

  • Witkovsky P, Schutte M (1991) The organization of dopaminergic neurons in vertebrate retinas. Vis Neurosci 7:113–124

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K, Hashimoto H, Tomimoto S, Shintani N, Miyazaki J, Tashiro F, Aihara H, Nammo T, Li M, Yamagata K, Miyagawa J, Matsuzawa Y, Kawabata Y, Fukuyama Y, Koga K, Mori W, Tanaka K, Matsuda T, Baba A (2003) Overexpression of PACAP in transgenic mouse pancreatic beta-cells enhances insulin secretion and ameliorates streptozotocin-induced diabetes. Diabetes 52:1155–1162

    Article  PubMed  CAS  Google Scholar 

  • Zeng XX, Ng YK, Ling EA (2000) Neuronal and microglial response in the retina of streptozotocin-induced diabetic rats. Vis Neurosci 17:463–471

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Gábor Tóth (University of Szeged, Hungary) for synthesizing PACAP and Prof. Seiji Shioda (Showa University, Japan) for the PAC1-R antibody. The authors also thank Brian K. Lucas for proof-reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krisztina Szabadfi.

Additional information

This work was supported by the Hungarian Science Research Fund OTKA K100144, K72592, 78480, 72315, 78223, SROP-4.2.2/B-10/1-2010-0029, Bolyai Scholarship, Lendulet Program of Hungarian Academy of Sciences and Richter Gedeon Foundation, SROP-4.2.1.B-10/2/KONV-2010-0002.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szabadfi, K., Atlasz, T., Kiss, P. et al. Protective effects of the neuropeptide PACAP in diabetic retinopathy. Cell Tissue Res 348, 37–46 (2012). https://doi.org/10.1007/s00441-012-1349-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1349-0

Keywords

Navigation