Skip to main content

Advertisement

Log in

The relationship between cell proliferation and differentiation and mapping of putative dental pulp stem/progenitor cells during mouse molar development by chasing BrdU-labeling

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Human dental pulp contains adult stem cells. Our recent study demonstrated the localization of putative dental pulp stem/progenitor cells in the rat developing molar by chasing 5-bromo-2’-deoxyuridine (BrdU)-labeling. However, there are no available data on the localization of putative dental pulp stem/progenitor cells in the mouse molar. This study focuses on the mapping of putative dental pulp stem/progenitor cells in addition to the relationship between cell proliferation and differentiation in the developing molar using BrdU-labeling. Numerous proliferating cells appeared in the tooth germ and the most active cell proliferation in the mesenchymal cells occurred in the prenatal stages, especially on embryonic Day 15 (E15). Cell proliferation in the pulp tissue dramatically decreased in number by postnatal Day 3 (P3) when nestin-positive odontoblasts were arranged in the cusped areas and disappeared after postnatal Week 1 (P1W). Root dental papilla included numerous proliferating cells during P5 to P2W. Three to four intraperitoneal injections of BrdU were given to pregnant ICR mice and revealed slow-cycling long-term label-retaining cells (LRCs) in the mature tissues of postnatal animals. Numerous dense LRCs postnatally decreased in number and reached a plateau after P1W when they mainly resided in the center of the dental pulp, associating with blood vessels. Furthermore, numerous dense LRCs co-expressed mesenchymal stem cell markers such as STRO-1 and CD146. Thus, dense LRCs in mature pulp tissues were believed to be dental pulp stem/progenitor cells harboring in the perivascular niche surrounding the endothelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • About I, Laurent-Maquin D, Lendahl U, Mitsiadis TA (2000) Nestin expression in embryonic and adult human teeth under normal and pathological conditions. Am J Pathol 157:287–295

    Article  PubMed  CAS  Google Scholar 

  • Alberts B (2008) Molecular biology of the cell. Garland, New York

    Google Scholar 

  • Balic A, Aguila HL, Caimano MJ, Francone VP, Mina M (2010) Characterization of stem and progenitor cells in the dental pulp of erupted and unerupted murine molars. Bone 46:1639–1651

    Article  PubMed  Google Scholar 

  • Batouli S, Miura M, Brahim J, Tsutsui TW, Fisher LW, Gronthos S, Robey PG, Shi S (2003) Comparison of stem-cell-mediated osteogenesis and dentinogenesis. J Dent Res 82:976–981

    Article  PubMed  CAS  Google Scholar 

  • Bronckers AL, Bervoets TJ, Woltgens JH (1982) A morphometric and biochemical study of the pre-eruptive development of hamster molars in vivo. Arch Oral Biol 27:831–840

    Article  PubMed  CAS  Google Scholar 

  • Casasco A, Casasco M, Cornaglia AI, Mazzini G, De Renzis R, Tateo S (1995) Detection of bromo-deoxyuridine- and proliferating cell nuclear antigen-immunoreactivities in tooth germ. Connect Tissue Res 32:63–70

    Article  PubMed  CAS  Google Scholar 

  • Caviedes-Bucheli J, Canales-Sanchez P, Castrillon-Sarria N, Jovel-Garcia J, Alvarez-Vasquez J, Rivero C, Azuero-Holguin MM, Diaz E, Munoz HR (2009) Expression of insulin-like growth factor-1 and proliferating cell nuclear antigen in human pulp cells of teeth with complete and incomplete root development. Int Endod J 42:686–693

    Article  PubMed  CAS  Google Scholar 

  • Coin R, Lesot H, Vonesch JL, Haikel Y, Ruch JV (1999) Aspects of cell proliferation kinetics of the inner dental epithelium during mouse molar and incisor morphogenesis: a reappraisal of the role of the enamel knot area. Int J Dev Biol 43:261–267

    PubMed  CAS  Google Scholar 

  • Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H (1984) Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 133:1710–1715

    PubMed  CAS  Google Scholar 

  • Gilbert SF (2006) Developmental biology. Sinauer, Sunderland, Mass

    Google Scholar 

  • Goldberg M, Smith AJ (2004) Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Crit Rev Oral Biol Med 15:13–27

    Article  PubMed  Google Scholar 

  • Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97:13625–13630

    Article  PubMed  CAS  Google Scholar 

  • Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81:531–535

    Article  PubMed  CAS  Google Scholar 

  • Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A, Simmons PJ (2003) Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116:1827–1835

    Article  PubMed  CAS  Google Scholar 

  • Grottkau BE, Purudappa PP, Lin YF (2010) Multilineage differentiation of dental pulp stem cells from green fluorescent protein transgenic mice. Int J Oral Sci 2:21–27

    Article  PubMed  Google Scholar 

  • Harada M, Kenmotsu S, Nakasone N, Nakakura-Ohshima K, Ohshima H (2008) Cell dynamics in the pulpal healing process following cavity preparation in rat molars. Histochem Cell Biol 130:773–783

    Article  PubMed  CAS  Google Scholar 

  • Harichane Y, Hirata A, Dimitrova-Nakov S, Granja I, Goldberg A, Kellermann O, Poliard A (2011) Pulpal progenitors and dentin repair. Adv Dent Res 23:307–312

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa T, Suzuki H, Yoshie H, Ohshima H (2007) Influence of extended operation time and of occlusal force on determination of pulpal healing pattern in replanted mouse molars. Cell Tissue Res 329:259–272

    Article  PubMed  Google Scholar 

  • Hoffman RL, Gillette RJ (1964) Mitotic patterns in the developing roots of hamster molars. Am J Anat 114:321–339

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa Y, Ida-Yonemochi H, Suzuki H, Nakakura-Ohshima K, Jung HS, Honda MJ, Ishii Y, Watanabe N, Ohshima H (2010) Mapping of BrdU label-retaining dental pulp cells in growing teeth and their regenerative capacity after injuries. Histochem Cell Biol 134:227–241

    Article  PubMed  CAS  Google Scholar 

  • Jernvall J, Aberg T, Kettunen P, Keranen S, Thesleff I (1998) The life history of an embryonic signaling center: BMP-4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development 125:161–169

    PubMed  CAS  Google Scholar 

  • Karbanova J, Soukup T, Suchanek J, Pytlik R, Corbeil D, Mokry J (2011) Characterization of dental pulp stem cells from impacted third molars cultured in low serum-containing medium. Cells Tissues Organs 193:344–365

    Article  PubMed  Google Scholar 

  • Kawagishi E, Nakakura-Ohshima K, Nomura S, Ohshima H (2006) Pulpal responses to cavity preparation in aged rat molars. Cell Tissue Res 326:111–122

    Article  PubMed  CAS  Google Scholar 

  • Kieffer S, Peterkova R, Vonesch JL, Ruch JV, Peterka M, Lesot H (1999) Morphogenesis of the lower incisor in the mouse from the bud to early bell stage. Int J Dev Biol 43:531–539

    PubMed  CAS  Google Scholar 

  • Kiel MJ, He S, Ashkenazi R, Gentry SN, Teta M, Kushner JA, Jackson TL, Morrison SJ (2007) Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature 449:238–242

    Article  PubMed  CAS  Google Scholar 

  • Kuratate M, Yoshiba K, Shigetani Y, Yoshiba N, Ohshima H, Okiji T (2008) Immunohistochemical analysis of nestin, osteopontin, and proliferating cells in the reparative process of exposed dental pulp capped with mineral trioxide aggregate. J Endod 34:970–974

    Article  PubMed  Google Scholar 

  • Lesot H, Vonesch JL, Peterka M, Tureckova J, Peterkova R, Ruch JV (1996) Mouse molar morphogenesis revisited by three-dimensional reconstruction. II. Spatial distribution of mitoses and apoptosis in cap to bell staged first and second upper molar teeth. Int J Dev Biol 40:1017–1031

    PubMed  CAS  Google Scholar 

  • Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 100:5807–5812

    Article  PubMed  CAS  Google Scholar 

  • Mokry J, Soukup T, Micuda S, Karbanova J, Visek B, Brcakova E, Suchanek J, Bouchal J, Vokurkova D, Ivancakova R (2010) Telomere attrition occurs during ex vivo expansion of human dental pulp stem cells. J Biomed Biotechnol 2010:673513

    Article  PubMed  Google Scholar 

  • Morris RJ, Liu Y, Marles L, Yang Z, Trempus C, Li S, Lin JS, Sawicki JA, Cotsarelis G (2004) Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 22:411–417

    Article  PubMed  CAS  Google Scholar 

  • Mutoh N, Nakatomi M, Ida-Yonemochi H, Nakagawa E, Tani-Ishii N, Ohshima H (2011) Responses of BrdU label-retaining dental pulp cells to allogenic tooth transplantation into mouse maxilla. Histochem Cell Biol 136:649–661

    Article  PubMed  CAS  Google Scholar 

  • Nakasone N, Yoshie H, Ohshima H (2006a) An immunohistochemical study of the expression of heat-shock protein-25 and cell proliferation in the dental pulp and enamel organ during odontogenesis in rat molars. Arch Oral Biol 51:378–386

    Article  PubMed  CAS  Google Scholar 

  • Nakasone N, Yoshie H, Ohshima H (2006b) The relationship between the termination of cell proliferation and expression of heat-shock protein-25 in the rat developing tooth germ. Eur J Oral Sci 114:302–309

    Article  PubMed  CAS  Google Scholar 

  • Ogawa R, Saito C, Jung HS, Ohshima H (2006) Capacity of dental pulp differentiation after tooth transplantation. Cell Tissue Res 326:715–724

    Article  PubMed  Google Scholar 

  • Ohshima H, Ajima H, Kawano Y, Nozawa-Inoue K, Wakisaka S, Maeda T (2000) Transient expression of heat shock protein (Hsp)25 in the dental pulp and enamel organ during odontogenesis in the rat incisor. Arch Histol Cytol 63:381–395

    Article  PubMed  CAS  Google Scholar 

  • Ohshima H, Nakakura-Ohshima K, Maeda T (2002) Expression of heat-shock protein 25 immunoreactivity in the dental pulp and enamel organ during odontogenesis in the rat molar. Connect Tissue Res 43:220–223

    PubMed  Google Scholar 

  • Ohta Y, Ichimura K (2000) Proliferation markers, proliferating cell nuclear antigen, Ki67, 5-bromo-2'-deoxyuridine, and cyclin D1 in mouse olfactory epithelium. Ann Otol Rhinol Laryngol 109:1046–1048

    PubMed  CAS  Google Scholar 

  • Osborn JW (1993) A model simulating tooth morphogenesis without morphogens. J Theor Biol 165:429–445

    Article  Google Scholar 

  • Pinzon RD, Toto PD, O'Malley JJ (1966) Kinetics of rat molar pulp cells at various ages. J Dent Res 45:934–938

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Ishikawa Y, Nakakura-Ohshima K, Ida-Yonemochi H, Nakatomi M, Kenmotsu S, Ohshima H (2011) Differentiation capacity of BrdU label-retaining dental pulp cells during pulpal healing following allogenic transplantation in mice. Biomed Res 32:247–257

    Article  PubMed  CAS  Google Scholar 

  • Shi S, Gronthos S (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 18:696–704

    Article  PubMed  Google Scholar 

  • Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S (2005) The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res 8:191–199

    Article  PubMed  CAS  Google Scholar 

  • Shigemura N, Kiyoshima T, Kobayashi I, Matsuo K, Yamaza H, Akamine A, Sakai H (1999) The distribution of BrdU- and TUNEL-positive cells during odontogenesis in mouse lower first molars. Histochem J 31:367–377

    Article  PubMed  CAS  Google Scholar 

  • Smith CE (1980) Cell turnover in the odontogenic organ of the rat incisor as visualized by graphic reconstructions following a single injection of 3H-thymidine. Am J Anat 158:321–343

    Article  PubMed  CAS  Google Scholar 

  • Takamori Y, Suzuki H, Nakakura-Ohshima K, Cai J, Cho SW, Jung HS, Ohshima H (2008) Capacity of dental pulp differentiation in mouse molars as demonstrated by allogenic tooth transplantation. J Histochem Cytochem 56:1075–1086

    Article  PubMed  CAS  Google Scholar 

  • Terling C, Rass A, Mitsiadis TA, Fried K, Lendahl U, Wroblewski J (1995) Expression of the intermediate filament nestin during rodent tooth development. Int J Dev Biol 39:947–956

    PubMed  CAS  Google Scholar 

  • Unno H, Suzuki H, Nakakura-Ohshima K, Jung HS, Ohshima H (2009) Pulpal regeneration following allogenic tooth transplantation into mouse maxilla. Anat Rec (Hoboken) 292:570–579

    Article  Google Scholar 

  • Wiese C, Rolletschek A, Kania G, Blyszczuk P, Tarasov KV, Tarasova Y, Wersto RP, Boheler KR, Wobus AM (2004) Nestin expression–a property of multi-lineage progenitor cells? Cell Mol Life Sci 61:2510–2522

    Article  PubMed  CAS  Google Scholar 

  • Yue Z, Jiang TX, Widelitz RB, Chuong CM (2005) Mapping stem cell activities in the feather follicle. Nature 438:1026–1029

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Mr. Shin-ichi Kenmotsu for his technical assistance. This work was supported in part by Grants-in-Aid for Scientific Research (B) (no. 22390341 to H.O.), Scientific Research (C) (no. 23593026 to K.N.-O.) and Exploratory Research (no. 20659296 to H.O.) from MEXT and JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayato Ohshima.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Dsp-IR in the sections of the first molars at E13 (a), E15 (b), E18 (c), P0 (d), P5 (e), P2W (f, g), and P5W (h) (B bone, D dentin, DP dental pulp, E enamel or enamel space, OC oral cavity). The tooth germ basically lacks Dsp-positive cells except for some epithelial and mesenchymal cells (arrows) (a). Dsp-IR is observed in the epithelial and mesenchymal cells including endothelial cells (arrows) in addition to bone cells (b). Dsp-IR is almost the same as that in the previous stage (c). Dsp-IR is very weak in the differentiated odontoblasts compared with the bone cells (d). Dsp is expressed in the differentiated odontoblasts and the bone and dentin matrices (arrows) (e-h). The sections are counter-stained with methylene blue. Bar 100 μm (a-d), 250 μm (e-h). (JPEG 287 kb)

High resolution image (TIFF 13573 kb)

Supplementary Fig. 2

Negative control for nestin (a, b: n = 1), BrdU (c, d, e, g: n = 1), STRO-1 (d, e, f: n = 1), and CD146 (d, e, f: n = 1) in the dark- (e-g) or light-fields (a-d) and phase-contrast images (h) at P5 (a), P2W (b), P3W (d), and P5W (c, e-f) (B bone, D dentin, DP dental pulp, E enamel space, OC oral cavity). The immunostained sections of negative controls contain no specific immunoreaction. (JPEG 157 kb)

High resolution image (TIFF 7.93 MB)

Supplementary Fig. 3

Aldehyde-fuchsin-Masson-Goldner (AF-MG) (a, c-e) and Azan (g) staining and double immunohistochemistry for nestin and osteopontin (Opn) (b, f, i) or CD31 (h, j) in the sections of the animal at E18 (n = 1: B bone, DP dental papilla, IEE inner enamel epithelium, M Meckel’s cartilage, OC oral cavity, T tongue). Nestin-IR appears in the CD31-positive endothelial cells of the dental papilla (e, h, j; arrows) in addition to the muscle and Opn-positive osteoblasts (a, c-g, i; arrows). Higher magnification of the boxed area labeled by c, d, e in a (c, d, e). Higher magnification of the boxed area labeled by f, i in b (f, i). Higher magnification of the boxed area labeled by j in h (j). Bars 250 μm (a, b), 50 μm (c-h), 25 μm (i, j). (JPEG 276 kb)

High resolution image (TIFF 12656 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishikawa, Y., Ida-Yonemochi, H., Nakakura-Ohshima, K. et al. The relationship between cell proliferation and differentiation and mapping of putative dental pulp stem/progenitor cells during mouse molar development by chasing BrdU-labeling. Cell Tissue Res 348, 95–107 (2012). https://doi.org/10.1007/s00441-012-1347-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1347-2

Keywords

Navigation