Skip to main content

Advertisement

Log in

Very-low-density lipoprotein mediates transcriptional regulation of aldosterone synthase in human adrenocortical cells through multiple signaling pathways

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Diabetic dyslipidemia is characterized by increased circulatory very-low-density lipoprotein (VLDL) levels. Aldosterone, apart from its role in fluid and electrolyte homeostasis, has also been implicated in insulin resistance and myocardial fibrosis. The impact of VLDL as a potential risk factor for aldosterone-mediated cardiovascular injury in diabetes mellitus, however, remains to be investigated. We have therefore studied native and modified VLDL-mediated steroidogenesis and its underlying molecular mechanisms in human adrenocortical carcinoma cells, NCI H295R. Native VLDL (natVLDL), isolated from healthy volunteers, was subjected to in vitro modification with glucose (200 mmol/l) or sodium hypochlorite (1.5 mmol/l) for preparation of glycoxidized and oxidized VLDL, respectively. VLDL treatment induced steroidogenesis in both a concentration- and time-dependent manner. Native and glycoxidized VLDL (50 μg/ml) were almost two-fold more potent in adrenocortical aldosterone release than angiotensin II (100 nmol/l). These forms of VLDL significantly augmented transcriptional regulation of aldosterone synthase (Cyp11B2), partially through scavenger receptor class B type I, as evident from the effect of BLT-1. In contrast to glycoxidized VLDL, oxidized VLDL significantly attenuated the stimulatory effect of natVLDL on adrenocortical hormone synthesis. Moreover, treatment with specific pharmacological inhibitors (H89, U0126, AG490) provided supporting evidence that VLDL, irrespective of modification, presumably recruited PKA, ERK1/2 and Jak-2 for steroid hormone release through modulation of Cyp11B2 mRNA level. In conclusion, this study demonstrates a novel insight into intracellular mechanism of VLDL-mediated aldosterone synthesis through transcriptional regulation of steroidogenic acute regulatory protein (StAR) and Cyp11B2 expression in human adrenocortical carcinoma cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adiels M, Taskinen MR, Packard C, Caslake MJ, Soro-Paavonen A, Westerbacka J, Vehkavaara S, Häkkinen A, Olofsson SO, Yki-Järvinen H, Borén J (2006) Overproduction of large VLDL particles is driven by increased liver fat content in man. Diabetologia 49:755–765

    Article  PubMed  CAS  Google Scholar 

  • Adiels M, Olofsson SO, Taskinen MR, Borén J (2008) Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler Thromb Vasc Biol 28:1225–1236

    Article  PubMed  CAS  Google Scholar 

  • Ansurudeen I, Pietzsch J, Graessler J, Ehrhart-Bornstein M, Saha S, Bornstein SR, Kopprasch S (2010) Modulation of adrenal aldosterone release by oxidative modification of low-density lipoprotein. Am J Hypertens 23(10):1061–1068

    Article  PubMed  CAS  Google Scholar 

  • Birkenkamp KU, Tuyt LML, Lummen C, Wierenga ATJ, Kruijer W, Vellenga W (2000) The p38 MAP kinase inhibitor SB203580 enhances nuclear factor-kappa B transcriptional activity by a non-specific effect upon the ERK pathway. Br J Pharmacol 131(1):99–107

    Article  PubMed  CAS  Google Scholar 

  • Braun A, Trigatti BL, Post MJ, Sato K, Simons M, Edelberg JM, Rosenberg RD, Schrenzel M, Krieger M (2002) Loss of SR-BI expression leads to the early onset of occlusive atherosclerotic coronary artery disease, spontaneous myocardial infarctions, severe cardiac dysfunction, and premature death in apolipoprotein E–deficient mice. Circ Res 90:270–276

    Article  PubMed  CAS  Google Scholar 

  • Brunzell JD, Davidson M, Furberg CD, Goldberg RB, Howard BV, Stein JH, Witztum JL (2008) Lipoprotein management in patients with cardiometabolic risk. Diabetes Care 31(4):811–822

    Article  PubMed  CAS  Google Scholar 

  • Calvo D, Gómez-Coronado D, Suárez Y, Lasunción MA, Vega MA (1998) Human CD36 is a high affinity receptor for the native lipoproteins HDL, LDL, and VLDL. J Lipid Res 39:777–788

    PubMed  CAS  Google Scholar 

  • Capponi AM (2002) Regulation of cholesterol supply for mineralocorticoid biosynthesis. Trends Endocrinol Metab 13(3):118–121

    Article  PubMed  CAS  Google Scholar 

  • Cushley RJ, Okon M (2002) NMR studies of lipoprotein structure. Annu Rev Biophys Biomol Struct 31:177–206

    Article  PubMed  CAS  Google Scholar 

  • Dinkel RE, Barrett PHR, Demant T, Parhofer KG (2006) In-vivo metabolism of VLDL-apolipoprotein-B, -CIII and -E in normolipidemic subjects. Nutr Metab Cardiovasc Dis 16:215–221

    Article  PubMed  CAS  Google Scholar 

  • Frias MA, James RW, Wicht CG, Lang U (2009) Native and reconstituted HDL activate Stat3 in ventricular cardiomyocytes via ERK1/2: role of sphingosine-1-phosphate. Cardiovasc Res 82:313–323

    Article  PubMed  CAS  Google Scholar 

  • Graessler J, Pietzsch J, Westendorf T, Julius U, Bornstein SR, Kopprasch S (2007) Glycoxidised LDL isolated from subjects with impaired glucose tolerance increases CD36 and peroxisome proliferator–activator receptor γ gene expression in macrophages. Diabetologia 50:1080–1088

    Article  PubMed  CAS  Google Scholar 

  • Gwynne JT, Hess B (1980) The role of high density lipoproteins in rat adrenal cholesterol metabolism and steroidogenesis. J Biol Chem 255(22):10875–10883

    PubMed  CAS  Google Scholar 

  • Higashijima M, Nawata H, Kato K, Ibayashi H (1987) Studies on lipoprotein and adrenal steroidogenesis: I. Roles of low density lipoprotein- and high density lipoprotein-cholesterol in steroid production in cultured human adrenocortical cells. Endocrinol Jpn 34(5):635–645

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra M, Korporaal SJA, Li Z, Zhao Y, Eck MV, Berkel TJCV (2010) Plasma lipoproteins are required for both basal and stress-induced adrenal glucocorticoid synthesis and protection against endotoxemia in mice. Am J Physiol Endocrinol Metab 299(6):E1038–E1043

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Zhang Z, Shen WJ, Azhar S (2010) Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr Metab 7(47):1–25

    Google Scholar 

  • Kannel WB, Vasan RS (2009) Triglycerides as vascular risk factors: new epidemiologic insights. Curr Opin Cardiol 24(4):345–350

    Article  PubMed  Google Scholar 

  • Kraemer FB (2007) Adrenal cholesterol utilization. Mol Cell Endocrinol 265–266:42–45

    Article  PubMed  Google Scholar 

  • Krug AW, Ehrhart-Bornstein M (2008) Aldosterone and metabolic syndrome: is increased aldosterone in metabolic syndrome patients an additional risk factor? Hypertension 51:1252–1258

    Article  PubMed  CAS  Google Scholar 

  • Laemmly UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  Google Scholar 

  • Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  PubMed  CAS  Google Scholar 

  • Li J, Feltzer RE, Dawson KL, Hudson EA, Clark BJ (2003) Janus Kinase 2 and calcium are required for angiotensinII-dependent activation of steroidogenic acute regulatory protein transcription in H295R human adrenocortical cells. J Biol Chem 278(52):52355–52362

    Article  PubMed  CAS  Google Scholar 

  • Maeba R, Shimasaki H, Ueta N (1994) Conformational changes in oxidized LDL recognized by mouse peritoneal macrophages. Biochim Biophys Acta 1215:79–86

    PubMed  CAS  Google Scholar 

  • Nieland TJF, Chroni A, Fitzgerald ML, Maliga Z, Zannis VI, Kirchhausen T, Krieger M (2004) Cross-inhibition of SR-BI- and ABCA1-mediated cholesterol transport by the small molecules BLT-4 and glyburide. J Lipid Res 45:1256–1265

    Article  PubMed  CAS  Google Scholar 

  • Nofer JR, Fobker M, Höbbel G, Voss R, Wolinska I, Tepel M, Zidek W, Junker R, Seedorf U, von Eckardstein A, Assmann G, Walter M (2000) Activation of phosphatidylinositol-specific phospholipase C by HDL-associated lysosphingolipid: involvement in mitogenesis but not in cholesterol efflux. Biochemistry 39:15199–15207

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapere JJ, Lindemann P, Norenberg MD, Nutt D, Weizman A, Zhang MR, Gavish M (2006) Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular´function. Trends Pharmacol Sci 27:402–409

    Article  PubMed  CAS  Google Scholar 

  • Pietzsch J, Subat S, Nitzsche S, Leonhardt W, Schentke KU, Hanefeld M (1995) Very fast ultracentrifugation of serum lipoproteins: influence on lipoprotein separation and composition. Biochim Biophys Acta 1254:77–88

    PubMed  Google Scholar 

  • Quinn SJ, Williams GH (1988) Regulation of aldosterone secretion. Annu Rev Physiol 50:409–426

    Article  PubMed  CAS  Google Scholar 

  • Richards JS (2001) New signaling pathways for hormones and cyclic adenosine 3',5'-monophosphate action in endocrine cells. Mol Endocrinol 15(2):209–218

    Article  PubMed  CAS  Google Scholar 

  • Sachinidis A, Kettenhofen R, Seewald S, Gouni-Berthold I, Schmitz U, Seul C, Ko Y, Vetter H (1999) Evidence that lipoproteins are carriers of bioactive factors. Arterioscler Thromb Vasc Biol 19(10):2412–2421

    Article  PubMed  CAS  Google Scholar 

  • Schmitt JM, Stork PJ (2002) Gα and Gβγ require distinct Src-dependent pathways to activate Rap1 and Ras. J Biol Chem 277:43024–43032

    Article  PubMed  CAS  Google Scholar 

  • Stillemark-Billton P, Beck C, Borén J, Olofsson SO (2005) Relation of the size and intracellular sorting of apoB to the formation of VLDL 1 and VLDL 2. J Lipid Res 46:104–114

    Article  PubMed  CAS  Google Scholar 

  • Xing Y, Cohen A, Rothblat G, Sankaranarayanan S, Weibel G, Royer L, Francone OL, Rainey WE (2011) Aldosterone production in human adrenocortical cells is stimulated by high-density lipoprotein 2 (HDL2) through increased expression of aldosterone aynthase (CYP11B2). Endocrinology 152(3):751–763

    Article  PubMed  CAS  Google Scholar 

  • Yagi K (1976) A simple fluorometric assay for lipoperoxide in blood plasma. Biochem Med 15:212–216

    Article  PubMed  CAS  Google Scholar 

  • Zheng X, Bollag WB (2003) AngII induces transient phospholipase D activity in the H295R glomerulosa cell model. Mol Cell Endocrinol 206(1–2):113–122

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Martina Kohl, Sigrid Nitzsche and Eva Schubert for their excellent technical support and Kathy Eisenhofer for her careful reading of the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft (KFO 252 to SRB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarama Saha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, S., Bornstein, S.R., Graessler, J. et al. Very-low-density lipoprotein mediates transcriptional regulation of aldosterone synthase in human adrenocortical cells through multiple signaling pathways. Cell Tissue Res 348, 71–80 (2012). https://doi.org/10.1007/s00441-012-1346-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1346-3

Keywords

Navigation