Skip to main content

Advertisement

Log in

How reggies regulate regeneration and axon growth

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The microdomain-forming proteins reggie-1 and reggie-2 (alias flotillins) were found to be upregulated in axon-regenerating fish retinal ganglion cells (RGCs). They were subsequently shown to be indispensible for axon regeneration and neurite extension in fish and mammals. Our current concept proposes that reggies—often together with the cellular Prion protein (PrP)—regulate the turnover of membrane and specific membrane proteins at the growth cone, which is the prerequisite for neurite elongation and guidance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ait-Slimane T, Galmes R, Trugnan G, Maurice M (2009) Basolateral internalization of GPI-anchored proteins occurs via a clathrin-independent flotillin-dependent pathway in polarized hepatic cells. Mol Biol Cell 20:3792–3800

    Article  PubMed  CAS  Google Scholar 

  • Baumann CA, Ribon V, Kanzaki M, Thurmond DC, Mora S, Shigematsu S, Bickel PE, Pessin JE, Saltiel AR (2000) CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature 407:202–207

    Article  PubMed  CAS  Google Scholar 

  • Becker CG, Lieberoth BC, Morellini F, Feldner J, Becker T, Schachner M (2004) L1.1 is involved in spinal cord regeneration in adult zebrafish. J Neurosci 24:7837–7842

    Article  PubMed  CAS  Google Scholar 

  • Benowitz LI, Yin Y (2007) Combinatorial treatments for promoting axon regeneration in the CNS: strategies for overcoming inhibitory signals and activating neurons' intrinsic growth state. Dev Neurobiol 67:1148–1165

    Article  PubMed  CAS  Google Scholar 

  • Bickel PE, Scherer PE, Schnitzer JE, Oh P, Lisanti MP, Lodish HF (1997) Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins. J Biol Chem 272:13793–13802

    Article  PubMed  CAS  Google Scholar 

  • Bodrikov V, Solis GP, Stuermer CAO (2011) Prion protein promotes growth cone development through reggie/flotillin-dependent N-Cadherin trafficking. J Neurosci 31:18013–18025

    Google Scholar 

  • Borner GH, Sherrier DJ, Weimar T, Michaelson LV, Hawkins ND, Macaskill A, Napier JA, Beale MH, Lilley KS, Dupree P (2005) Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts. Plant Physiol 137:104–116

    Article  PubMed  CAS  Google Scholar 

  • Browman DT, Hoegg MB, Robbins SM (2007) The SPFH domain-containing proteins: more than lipid raft markers. Trends Cell Biol 17:394–402

    Article  PubMed  CAS  Google Scholar 

  • Caroni P, Schwab ME (1988) Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. Neuron 1:85–96

    Article  PubMed  CAS  Google Scholar 

  • Chang L, Chiang SH, Saltiel AR (2007) TC10alpha is required for insulin-stimulated glucose uptake in adipocytes. Endocrinology 148:27–33

    Article  PubMed  CAS  Google Scholar 

  • Chen MS, Huber AB, van der Haar ME, Frank M, Schnell L, Spillmann AA, Christ F, Schwab ME (2000) Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403:434–439

    Article  PubMed  CAS  Google Scholar 

  • Chen XW, Inoue M, Hsu SC, Saltiel AR (2006) RalA-exocyst-dependent recycling endosome trafficking is required for the completion of cytokinesis. J Biol Chem 281:38609–38616

    Article  PubMed  CAS  Google Scholar 

  • Chiesa R, Harris DA (2009) Fishing for prion protein function. PLoS Biol 7:e75

    Article  PubMed  Google Scholar 

  • Cornfine S, Himmel M, Kopp P, El Azzouzi K, Wiesner C, Krüger M, Rudel T, Linder S (2011) The kinesin KIF9 and reggie/flotillin proteins regulate matrix degradation by macrophage podosomes. Mol Biol Cell 22:202–215

    Article  PubMed  CAS  Google Scholar 

  • Cremona ML, Matthies HJ, Pau K, Bowton E, Speed N, Lute BJ, Anderson M, Sen N, Robertson SD, Vaughan RA, Rothman JE, Galli A, Javitch JA, Yamamoto A (2011) Flotillin-1 is essential for PKC-triggered endocytosis and membrane microdomain localization of DAT. Nat Neurosci 14:469–477

    Article  PubMed  CAS  Google Scholar 

  • Das V, Nal B, Dujeancourt A, Thoulouze MI, Galli T, Roux P, Dautry-Varsat A, Alcover A (2004) Activation-induced polarized recycling targets T cell antigen receptors to the immunological synapse; involvement of SNARE complexes. Immunity 20:577–588

    Article  PubMed  CAS  Google Scholar 

  • Dermine JF, Duclos S, Garin J, St-Louis F, Rea S, Parton RG, Desjardins M (2001) Flotillin-1-enriched lipid raft domains accumulate on maturing phagosomes. J Biol Chem 276:18507–18512

    Article  PubMed  CAS  Google Scholar 

  • Dupraz S, Grassi D, Bernis ME, Sosa L, Bisbal M, Gastaldi L, Jausoro I, Cáceres A, Pfenninger KH, Quiroga S (2009) The TC10-Exo70 complex is essential for membrane expansion and axonal specification in developing neurons. J Neurosci 29:13292–13301

    Article  PubMed  CAS  Google Scholar 

  • Falcone S, Cocucci E, Podini P, Kirchhausen T, Clementi E, Meldolesi J (2006) Macropinocytosis: regulated coordination of endocytic and exocytic membrane traffic events. J Cell Sci 119:4758–4769

    Article  PubMed  CAS  Google Scholar 

  • Feig LA (2003) Ral-GTPases: approaching their 15 minutes of fame. Trends Cell Biol 13:419–425

    Article  PubMed  CAS  Google Scholar 

  • Fra AM, Williamson E, Simons K, Parton RG (1994) Detergent-insoluble glycolipid microdomains in lymphocytes in the absence of caveolae. J Biol Chem 269:30745–30748

    PubMed  CAS  Google Scholar 

  • Frick M, Bright NA, Riento K, Bray A, Merrified C, Nichols BJ (2007) Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding. Curr Biol 17:1151–1156

    Article  PubMed  CAS  Google Scholar 

  • Friedrichson T, Kurzchalia TV (1998) Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature 394:802–805

    Article  PubMed  CAS  Google Scholar 

  • Gaze RM (1970) The formation of nerve connections. Academic, London

    Google Scholar 

  • Ge L, Qi W, Wang LJ, Miao HH, Qu YX, Li BL, Song BL (2011) Flotillins play an essential role in Niemann-Pick C1-like 1-mediated cholesterol uptake. Proc Natl Acad Sci USA 108:551–556

    Article  PubMed  CAS  Google Scholar 

  • Glebov OO, Bright NA, Nichols BJ (2006) Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nat Cell Biol 8:46–54

    Article  PubMed  CAS  Google Scholar 

  • Hinderhofer M, Walker CA, Friemel A, Stuermer CA, Möller HM, Reuter A (2009) Evolution of prokaryotic SPFH proteins. BMC Evol Biol 9:10

    Article  PubMed  Google Scholar 

  • Katanaev VL, Solis GP, Hausmann G, Buestorf S, Katanayeva N, Schrock Y, Stuermer CA, Basler K (2008) Reggie-1/flotillin-2 promotes secretion of the long-range signalling forms of wingless and hedgehog in drosophila. EMBO J 27:509–521

    Article  PubMed  CAS  Google Scholar 

  • Kioka N, Ueda K, Amachi T (2002) Vinexin, CAP/ponsin, ArgBP2: a novel adaptor protein family regulating cytoskeletal organization and signal transduction. Cell Struct Funct 27:1–7

    Article  PubMed  CAS  Google Scholar 

  • Kirkham M, Nixon SJ, Howes MT, Abi-Rached L, Wakeham DE, Hanzal-Bayer M, Ferguson C, Hill MM, Fernandez-Rojo M, Brown DA, Hancock JF, Brodsky FM, Parton RG (2008) Evolutionary analysis and molecular dissection of caveola biogenesis. J Cell Sci 121:2075–2086

    Article  PubMed  CAS  Google Scholar 

  • Lang DM, Lommel S, Jung M, Ankerhold R, Petrausch B, Laessing U, Wiechers MF, Plattner H, Stuermer CA (1998) Identification of reggie-1 and reggie-2 as plasmamembrane-associated proteins which cocluster with activated GPI-anchored cell adhesion molecules in non-caveolar micropatches in neurons. J Neurobiol 37:502–523

    Article  PubMed  CAS  Google Scholar 

  • Langhorst MF, Jaeger FA, Mueller S, Sven Hartmann L, Luxenhofer G, Stuermer CA (2008a) Reggies/flotillins regulate cytoskeletal remodeling during neuronal differentiation via CAP/ponsin and Rho GTPases. Eur J Cell Biol 87:921–931

    Article  PubMed  CAS  Google Scholar 

  • Langhorst MF, Reuter A, Jaeger FA, Wippich FM, Luxenhofer G, Plattner H, Stuermer CA (2008b) Trafficking of the microdomain scaffolding protein reggie-1/flotillin-2. Eur J Cell Biol 87:211–226

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Deyoung SM, Zhang M, Dold LH, Saltiel AR (2005) The stomatin/prohibitin/flotillin/HflK/C domain of flotillin-1 contains distinct sequences that direct plasma membrane localization and protein interactions in 3T3-L1 adipocytes. J Biol Chem 280:16125–16134

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Tedeschi A, Park KK, He Z (2011) Neuronal intrinsic mechanisms of axon regeneration. Annu Rev Neurosci 34:131–152

    Article  PubMed  Google Scholar 

  • Ludwig A, Otto GP, Riento K, Hams E, Fallon PG, Nichols BJ (2010) Flotillin microdomains interact with the cortical cytoskeleton to control uropod formation and neutrophil recruitment. J Cell Biol 191:771–781

    Article  PubMed  CAS  Google Scholar 

  • Lundmark R, Doherty GJ, Howes MT, Cortese K, Vallis Y, Parton RG, McMahon HT (2008)The GTPase-activating protein GRAF1 regulates the CLIC/GEEC endocytic pathway.Curr Biol 18:1802–1808

    Google Scholar 

  • Malaga-Trillo E, Solis GP, Schrock Y, Geiss C, Luncz L, Thomanetz V, Stuermer CA (2009) Regulation of embryonic cell adhesion by the prion protein. PLoS Biol 7:e55

    Article  PubMed  Google Scholar 

  • Morrow IC, Parton RG (2005) Flotillins and the PHB domain protein family: rafts, worms and anaesthetics. Traffic 6:725–740

    Article  PubMed  CAS  Google Scholar 

  • Morrow IC, Rea S, Martin S, Prior IA, Prohaska R, Hancock JF, James DE, Parton RG (2002) Flotillin-1/reggie-2 traffics to surface raft domains via a novel golgi-independent pathway. Identification of a novel membrane targeting domain and a role for palmitoylation. J Biol Chem 277:48834–48841

    Article  PubMed  CAS  Google Scholar 

  • Munderloh C, Solis GP, Bodrikov V, Jaeger FA, Wiechers M, Málaga-Trillo E, Stuermer CA (2009) Reggies/flotillins regulate retinal axon regeneration in the zebrafish optic nerve and differentiation of hippocampal and N2a neurons. J Neurosci 29:6607–6615

    Article  PubMed  CAS  Google Scholar 

  • Neumann-Giesen C, Falkenbach B, Beicht P, Claasen S, Luers G, Stuermer CA, Herzog V, Tikkanen R (2004) Membrane and raft association of reggie-1/flotillin-2: role of myristoylation, palmitoylation and oligomerization and induction of filopodia by overexpression. Biochem J 378:509–518

    Article  PubMed  CAS  Google Scholar 

  • Planchamp V, Bermel C, Tönges L, Ostendorf T, Kügler S, Reed JC, Kermer P, Bähr M, Lingor P (2008) BAG1 promotes axonal outgrowth and regeneration in vivo via Raf-1 and reduction of rock activity. Brain 131:2606–2619

    Article  PubMed  Google Scholar 

  • Pommereit D, Wouters FS (2007) An NGF-induced Exo70-TC10 complex locally antagonises Cdc42-mediated activation of N-WASP to modulate neurite outgrowth. J Cell Sci 120:2694–2705

    Article  PubMed  CAS  Google Scholar 

  • Rajendran L, Masilamani M, Solomon S, Tikkanen R, Stuermer CA, Plattner H, Illges H (2003) Asymmetric localization of flotillins/reggies in preassembled platforms confers inherent polarity to hematopoietic cells. Proc Natl Acad Sci USA 100:8241–8246

    Article  PubMed  CAS  Google Scholar 

  • Richardson PM, McGuinness UM, Aguayo AJ (1980) Axons from CNS neurons regenerate into PNS grafts. Nature 284:264–265

    Article  PubMed  CAS  Google Scholar 

  • Rossy J, Schlicht D, Engelhardt B, Niggli V (2009) Flotillins interact with PSGL-1 in neutrophils and, upon stimulation, rapidly organize into membrane domains subsequently accumulating in the uropod. PLoS One 4:e5403

    Article  PubMed  Google Scholar 

  • Santamaría A, Castellanos E, Gómez V, Benedit P, Renau-Piqueras J, Morote J, Reventós J, Thomson TM, Paciucci R (2005) PTOV1 enables the nuclear translocation and mitogenic activity of flotillin-1, a major protein of lipid rafts. Mol Cell Biol 25:1900–1911

    Article  PubMed  Google Scholar 

  • Schneider A, Rajendran L, Honsho M, Gralle M, Donnert G, Wouters F, Hell SW, Simons M (2008) Flotillin-dependent clustering of the amyloid precursor protein regulates its endocytosis and amyloidogenic processing in neurons. J Neurosci 28:2874–2882

    Article  PubMed  CAS  Google Scholar 

  • Schulte T, Paschke KA, Laessing U, Lottspeich F, Stuermer CA (1997) Reggie-1 and reggie-2, two cell surface proteins expressed by retinal ganglion cells during axon regeneration. Development 124:577–587

    PubMed  CAS  Google Scholar 

  • Shao Y, Akmentin W, Toledo-Aral JJ, Rosenbaum J, Valdez G, Cabot JB, Hilbush BS, Halegoua S (2002) Pincher, a pinocytic chaperone for nerve growth factor/TrkA signaling endosomes. J Cell Biol 157:679–691

    Article  PubMed  CAS  Google Scholar 

  • Shyng SL, Huber MT, Harris DA (1993) A prion protein cycles between the cell surface and an endocytic compartment in cultured neuroblastoma cells. J Biol Chem 268:15922–15928

    PubMed  CAS  Google Scholar 

  • Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156

    Article  PubMed  CAS  Google Scholar 

  • Simons K, Ehehalt R (2002) Cholesterol, lipid rafts, and disease. J Clin Invest 110:597–603

    PubMed  CAS  Google Scholar 

  • Solis GP, Hoegg M, Munderloh C, Schrock Y, Malaga-Trillo E, Rivera-Milla E, Stuermer CA (2007) Reggie/flotillin proteins are organized into stable tetramers in membrane microdomains. Biochem J 403:313–322

    Article  PubMed  CAS  Google Scholar 

  • Solis GP, Schrock Y, Hülsbusch N, Wiechers M, Plattner H, Stuermer CAO (submitted) Reggies / Flotillins regulate E-cadherin-mediated cell contact formation by affecting EGFR trafficking

  • Stuermer CA (2010) The reggie/flotillin connection to growth. Trends Cell Biol 20:6–13

    Article  PubMed  CAS  Google Scholar 

  • Stuermer CA, Lang DM, Kirsch F, Wiechers M, Deininger SO, Plattner H (2001) Glycosylphosphatidyl inositol-anchored proteins and fyn kinase assemble in noncaveolar plasma membrane microdomains defined by reggie-1 and -2. Mol Biol Cell 12:3031–3045

    PubMed  CAS  Google Scholar 

  • Stuermer CA, Langhorst MF, Wiechers MF, Legler DF, Von Hanwehr SH, Guse AH, Plattner H (2004) PrPc capping in T cells promotes its association with the lipid raft proteins reggie-1 and reggie-2 and leads to signal transduction. FASEB J 18:1731–1733

    PubMed  CAS  Google Scholar 

  • Stuermer CAO, Leppert CA (2000) In: Murray NAIngogliaM (ed) Molecular determinats of retinal axon pathfinding in fish. Axonal Regeneration in the Central Nervous System. Marcel Dekker, New York

    Google Scholar 

  • Wienke D, Drengk A, Schmauch C, Jenne N, Maniak M (2006) Vacuolin, a flotillin/reggie-related protein from dictyostelium oligomerizes for endosome association. Eur J Cell Biol 85:991–1000

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia A. O. Stuermer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stuermer, C.A.O. How reggies regulate regeneration and axon growth. Cell Tissue Res 349, 71–77 (2012). https://doi.org/10.1007/s00441-012-1343-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1343-6

Keywords

Navigation