Skip to main content
Log in

Development of the zebrafish myoseptum with emphasis on the myotendinous junction

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Zebrafish myosepta connect two adjacent muscle cells and transmit muscular forces to axial structures during swimming via the myotendinous junction (MTJ). The MTJ establishes transmembrane linkages system consisting of extracellular matrix molecules (ECM) surrounding the basement membrane, cytoskeletal elements anchored to sarcolema, and all intermediate proteins that link ECM to actin filaments. Using a series of zebrafish specimens aged between 24 h post-fertilization and 2 years old, the present paper describes at the transmission electron microscope level the development of extracellular and intracellular elements of the MTJ. The transverse myoseptum development starts during the segmentation period by deposition of sparse and loosely organized collagen fibrils. During the hatching period, a link between actin filaments and sarcolemma is established. The basal lamina underlining sarcolemma is well differentiated. Later, collagen fibrils display an orthogonal orientation and fibroblast-like cells invade the myoseptal stroma. A dense network of collagen fibrils is progressively formed that both anchor myoseptal fibroblasts and sarcolemmal basement membrane. The differentiation of a functional MTJ is achieved when sarcolemma interacts with both cytoskeletal filaments and extracellular components. This solid structural link between contractile apparatus and ECM leads to sarcolemma deformations resulting in the formation of regular invaginations, and allows force transmission during muscle contraction. This paper presents the first ultrastructural atlas of the zebrafish MTJ development, which represents an useful tool to analyse the mechanisms of the myotendinous system formation and their disruption in muscle disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ascenzi A, Bonucci E (1968) The compressive properties of single osteons as a problem of molecular biology. Calcif Tissue Res Suppl: 44–44a

  • Bader HL, Keene DR, Charvet B, Veit G, Driever W, Koch M, Ruggiero F (2009) Zebrafish collagen XII is present in embryonic connective tissue sheaths (fascia) and basement membranes. Matrix Biol 28:32–43

    Article  PubMed  CAS  Google Scholar 

  • Birk D, Trelstad RL (1984) Extracellular compartments in matrix morphogenesis: collagen fibril, bundle, and lamellar formation by corneal fibroblasts. J Cell Biol 99:2024–2033

    Article  PubMed  CAS  Google Scholar 

  • Birk D, Trelstad RL (1985) Fibroblasts create compartments in the extracellular space where collagen polymerizes into fibrils and fibrils associate into bundles. Ann NY Acad Sci 460:258–266

    Article  PubMed  CAS  Google Scholar 

  • Birk D, Trelstad RL (1986) Extracellular compartments in tendon morphogenesis: collagen fibril, bundle, and macroaggregate formation. J Cell Biol 103:231–240

    Article  PubMed  CAS  Google Scholar 

  • Câmara-Pereira ES, Campos LM, Vaniier-Santos MA, Mermelstein CS, Costa ML (2009) Distribution of cytoskeletal and adhesion proteins in adult zebrafish skeletal muscle. Histol Histopathol 24:187–196

    PubMed  Google Scholar 

  • Canty EG, Starborg T, Lu Y, Humphries SM, Homes DF, Meadows RS, Huffman A, O’Toole ET, Kadler KE (2006) Actin filaments are required for fibripositor-mediated collagen fibril alignment in tendon. J Biol Chem 281:38592–38598

    Article  PubMed  CAS  Google Scholar 

  • Costa ML, Escaleira RC, Jazenko F, Mermelstein CS (2008) Cella adhesion in zebrafish myogenesis: distribution of intermediate filaments, microfilaments, intracellular adhesion structures and extracellular matrix. Cell Motil Cytoskeleton 65:801–815

    Article  PubMed  Google Scholar 

  • Crawford BD, Henry CA, Clason TA, Becker AL, Hille MB (2003) Activity and distribution of paxillin, focal adhesion kinase, and cadherin indicate cooperative roles during zebrafish morphogenesis. Mol Biol Cell 14:3065–3081

    Article  PubMed  CAS  Google Scholar 

  • Devoto SH, Melançon E, Eisen JS, Westerfield M (1996) Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation. Development 122:3371–3380

    PubMed  CAS  Google Scholar 

  • Dolez M, Nicolas JF, Hirsinger E (2011) Laminins, vi heparin sulfate proteoglycans, participate in zebrafish myotome morphogenesis by modulating pattern of Bmp responsiveness. Development 138:97–106

    Article  PubMed  CAS  Google Scholar 

  • Forgacs G, Newman SA, Hinner B, Maier CW, Sackmann E(2003) Assembly of collagen matrices as a phase transition revealed by structuraland rheologic studies. Biophys J 84:1272–1280

    Google Scholar 

  • Gawlik KI, Mayer U, Blomberg K, Sonnenberg A, Ekblom P, Durbeej M (2006) Laminin alpha1 chain mediated reduction of laminin alpha2 chain deficient muscular dystrophy involves integrin alpha7beta1 and dystroglycan. FEBS Lett 580:1759–1765

    Article  PubMed  CAS  Google Scholar 

  • Gemballa S, Vogel F (2002) Spatial arrangement of white muscle fibers andmyoseptal tendons in fishes. Comp Biochem Physiol 133A:1013–1037

    Google Scholar 

  • Gemballa S, Ebmeyer L, Hagen K, Hoja K, Treiber K, Vogel F,Weitbrecht GW (2003) Evolutionary transformations of myoseptaltendons in gnathostomes. Proc R Soc Lond B 270:1229–1235

    Google Scholar 

  • Giraud-Guille MM, Besseau L, Chopin C, Durant P, Herbage D (2000) Structural aspects of fish skin which forms ordered arrays via liquid crystalline states. Biomaterials 21:899–906

    Article  PubMed  CAS  Google Scholar 

  • Guyon R, An M, Zhou Y, O’Brien KF, Sheng X, Chiang K, Davidson AJ, Volinski JM, Zon LI, Kunkel LM (2003) The dystrophin associated protein complex in zebrafish. Hum Mol Genet 12:601–615

    Article  PubMed  CAS  Google Scholar 

  • Henry CA, Amacher SL (2004) Zebrafish slow muscle cell migration induces a wave of fast muscle morphogenesis. Dev Cell 7:917–923

    Article  PubMed  CAS  Google Scholar 

  • Henry CA, Crawford BD, Yan YL, Postlethwait J, Cooper MS, Hille MB (2001) Roles for zebrafish focal adhesion kinase in notochord and somite morphogenesis. Dev Biol 240:474–487

    Article  PubMed  CAS  Google Scholar 

  • Holmes DF, Gilpin CJ, Baldock C, Ziese U, Koster AJ, Kadler KE (2001) Corneal collagen fibril structure in three dimensions: structural insights into fibril assembly, mechanical properties, and tissue organization. Proc Natl Acad Sci USA 98:7307–7312

    Article  PubMed  CAS  Google Scholar 

  • Jacoby AS, Busch-Nentwich E, Bryson-Richardson RJ, Hall TE, Berger J, Berger S, Sonntag C, Sachs C, Geisler R, Stemple DL, Currie PD (2009) The zebrafish dystrophic mutant softy maintains muscle fibre viability despite basement membrane rupture and muscle detachment. Development 136:3367–3376

    Article  PubMed  CAS  Google Scholar 

  • Kadler KE, Hill A, Canty-Laird (2008) Collagen fibrillogenesis: fibronectin, intégrines and minor collagens as organizers and nucleators. Curr Opin Cell Biol 20:495–501

    Article  PubMed  CAS  Google Scholar 

  • Kalston NS, Holmes DF, Kapacee Z, Otermin I, Lu Y, Ennos RA, Canty-Laird EG, Kadler KE (2010) An experimental model for studying the biomechanics of embryonic tendon: evidence that the development of mechanical properties depends on the actinomyosin machinery. Matrix Biol 29:678–689

    Article  Google Scholar 

  • Kostrominova TY, Clave S, Arruda EM, Larkin LM (2009) Ultrastructure of myotendinous junctions in tendon-skeletal muscle constructs engineered in vitro. Histol Histopathol 24:541–550

    PubMed  Google Scholar 

  • Kudo H, Amizuka N, Araki K, Inohaya K, Kudo A (2004) Zebrafish periostin is required for the adhesion of muscle fiber bundles to the myoseptum and for the differentiation of muscle fibers. Dev Biol 267:473–87

    Article  PubMed  CAS  Google Scholar 

  • Latimer A, Jessen JR (2010) Extracellular matrix assembly and organization during zebrafish gastrulation. Matrix Biol 29:89–96

    Article  PubMed  CAS  Google Scholar 

  • Le Guellec D, Morvan-Dubois G, Sire JY (2004) Skin development in bony fish with particular emphasis on collagen deposition in the dermis of the zebrafish (Danio rerio). Int J Dev Biol 48:217–231

    Article  PubMed  Google Scholar 

  • Morvan-Dubois GM, Haftek Z, Crozet C, Garrone R, Le Guellec D (2002) Structure and spatio temporal expression of the full length DNA complementary to RNA coding for alpha2 type I collagen of zebrafish. Gene 294:55–65

    Article  Google Scholar 

  • Parsons MJ, Campos I, Hirst EM, Stemple DL (2002) Removal of dystroglycan causes severe muscular dystrophy in zebrafish embryos. Development 129:3505–3512

    PubMed  CAS  Google Scholar 

  • Ploetz C, Zycband EI, Birk DE (1991) Collagen fibril assembly and deposition in the developing dermis: segmental deposition in extracellular compartment. J Struct Biol 106:73–81

    Article  PubMed  CAS  Google Scholar 

  • Pollard SM, Parsons MJ, Kamei M, Kettleborough RN, Thomas KA, Pham VN, Bae MK, Scott A, Weinstein BM, Stemple DL (2006) Essential and overlapping roles for laminin alpha chains in notochord and blood vessel formation. Dev Biol 289:64–76

    Article  PubMed  CAS  Google Scholar 

  • Sire JY, Géraudie J, Meunier FJ, Zylberberg L (1987) On the origin of ganoine: histological and ultrastructural and ultrastructural data on the experimental regeneration of the scales of Calamoichthys calabaricus (Osteichthyes, Brachyopterygii, Polypteridea). Am J Anat 180:391–402

    Article  PubMed  CAS  Google Scholar 

  • Snow CJ, Henry CA (2009) Dynamic formation of microenvironments at the myotendinous junction correlates with muscle fiber morphogenesis in zebrafish. Gene Expr Patterns 9:37–42

    Article  PubMed  CAS  Google Scholar 

  • Snow CJ, Peterson MT, Khalil A, Henry CA (2008) Muscle development is disrupted in zebrafish embryos deficient for fibronectin. Dev Dyn 237:2542–2553

    Article  PubMed  Google Scholar 

  • Summers AP, Koob TJ (2002) The evolution of tendon. CompBiochem Physiol 133:1159–1170

    Google Scholar 

  • Tamori M, Yamada A, Nishida N, Motobayashi Y, Oiwa K, Motokawa T (2006) Tensilin-like stiffening protein from Holothuria leucospilota does not induce the stiffest state of catch connective tissue. J Exp Biol 209:1594–1602

    Article  PubMed  CAS  Google Scholar 

  • Tipper JP, Lyons-Levy G, Atkinson MA, Trotter JA (2002) Purification, characterization and cloning of tensilin, the collagen-fibril binding and tissue-stiffening factor from Cucumaria frondosa dermis. Matrix Biol 21:625–635

    Article  PubMed  CAS  Google Scholar 

  • Tongiorgi E (1999) Tenascin-C expression in the trunk of wild-type, cyclops and floating head zebrafish embryos. Brain Res Bull 48:79–88

    Article  PubMed  CAS  Google Scholar 

  • Trelstad RL, Coulombre AJ (1971) Morphogenesis of the collagenous stroma in chick cornea. J Cell Biol 50:840–858

    Article  PubMed  CAS  Google Scholar 

  • Veit G, Hansen U, Keene DR, Bruckner P, Chiquet-Ehrismann R, Chiquet M, Koch M (2006) Collagen XII interacts with avian tenascin-X through its NC3 domain. J Biol Chem 281:27461–27470

    Article  PubMed  CAS  Google Scholar 

  • Wakatsuki T, Elson EL (2003) Reciprocal interaction between cells and extracellular matrix during remodeling of tissue constructs. Biophys Chem 10:593–605

    Article  Google Scholar 

  • Weber P, Montag D, Schanchner M, Bernharldt RR (1998) Zebrafish tenascin-W, a new member of the tenascin family. J Neurobiol 35:1–16

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank L. Bernard (PRECI, IFR 128 Biosciences Gerland, Lyon) for fish maintenance and helpful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Le Guellec.

Additional information

Florence Ruggiero and Dominique Le Guellec contributed equally to this work.

The work was supported by ANR (Muscolten) and AFM to F.R. B.C. was supported by FRM and by the University of Lyon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charvet, B., Malbouyres, M., Pagnon-Minot, A. et al. Development of the zebrafish myoseptum with emphasis on the myotendinous junction. Cell Tissue Res 346, 439–449 (2011). https://doi.org/10.1007/s00441-011-1266-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-011-1266-7

Keywords

Navigation