Skip to main content
Log in

Identification of vimentin- and elastin-like transcripts specifically expressed in developing notochord of Atlantic salmon (Salmo salar L.)

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The notochord functions as the midline structural element of all vertebrate embryos, and allows movement and growth at early developmental stages. Moreover, during embryonic development, notochord cells produce secreted factors that provide positional and fate information to a broad variety of cells within adjacent tissues, for instance those of the vertebrae, central nervous system and somites. Due to the large size of the embryo, the salmon notochord is useful to study as a model for exploring notochord development. To investigate factors that might be involved in notochord development, a normalized cDNA library was constructed from a mix of notochords from ∼500 to ∼800 day°. From the 1968 Sanger-sequenced transcripts, 22 genes were identified to be predominantly expressed in the notochord compared to other organs of salmon. Twelve of these genes were found to show expressional regulation around mineralization of the notochord sheath; 11 genes were up-regulated and one gene was down-regulated. Two genes were found to be specifically expressed in the notochord; these genes showed similarity to vimentin (acc. no GT297094) and elastin (acc. no GT297478). In-situ results showed that the vimentin- like transcript was expressed in both chordocytes and chordoblasts, whereas the elastin- like transcript was uniquely expressed in the chordoblasts lining the notochordal sheath. In salmon aquaculture, vertebral deformities are a common problem, and some malformations have been linked to the notochord. The expression of identified transcripts provides further insight into processes taking place in the developing notochord, prior to and during the early mineralization period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed H, Du SJ, O’Leary N, Vasta GR (2004) Biochemical and molecular characterization of galectins from zebrafish (Danio rerio): notochord-specific expression of a prototype galectin during early embryogenesis. Glycobiology 14:219–232

    Article  PubMed  CAS  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  PubMed  CAS  Google Scholar 

  • Baas D, Malbouyres M, Haftek-Terreau Z, Le Guellec D, Ruggiero F (2009) Craniofacial cartilage morphogenesis requires zebrafish col11a1 activity. Matrix Biol 28(8):490–502

    Article  PubMed  CAS  Google Scholar 

  • Bočina I, Saraga-Babić M (2006) Immunohistochemical study of cytoskeletal and extracellular matrix components in the notochord and notochordal sheath of amphioxus. Int J Biol Sci 2:73–78

    Article  PubMed  Google Scholar 

  • Cerdà J, Gründ C, Franke WW, Brand M (2002) Molecular characterization of calymmin, a novel notochord sheath-associated extracellular matrix protein in the zebrafish embryo. Dev Dyn 224:200–209

    Article  PubMed  Google Scholar 

  • Chen WY, John JA, Lin CH, Chang CY (2007) Expression pattern of metallothionein, MTF-1 nuclear translocation, and its dna-binding activity in zebrafish (Danio rerio) induced by zinc and cadmium. Environ Toxicol Chem 26:110–117

    Article  PubMed  CAS  Google Scholar 

  • Chung MI, Miao M, Stahl RJ, Chan E, Parkinson J, Keeley FW (2006) Sequences and domain structures of mammalian, avian, amphibian and teleost tropoelastins: clues to the evolutionary history of elastins. Matrix Biol 25:492–504

    Article  PubMed  CAS  Google Scholar 

  • Eckes B, Dogic D, Colucci-Guyon E, Wang N, Maniotis A, Ingber D, Merckling A, Langa F, Aumailley M, Delouvee A, Koteliansky V, Babinet C, Krieg T (1998) Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts. J Cell Sci 111(13):1897–1907

    PubMed  CAS  Google Scholar 

  • Erickson CA, Tucker RP, Edwards BF (1987) Changes in the distribution of intermediate-filament types in Japanese quail embryos during morphogenesis. Differentiation 34(2):88–97

    Article  PubMed  CAS  Google Scholar 

  • Ewing B, Hillier LD, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    PubMed  CAS  Google Scholar 

  • Fjelldal G, Hansen TJ, Berg AE (2007) A radiological study on the development of vertebral deformities in cultured Atlantic salmon (Salmo salar L.). Aquaculture 273:721–728

    Article  Google Scholar 

  • Fleming A, Keynes R, Tannahill D (2004) A central role for the notochord in vertebral patterning. Development 131:873–880

    Article  PubMed  CAS  Google Scholar 

  • Flood PR (1967) Further observations on notochord of amphioxus. J Ultrastruct Res 25:161

    Google Scholar 

  • Gorodilov YN (1996) Description of the early ontogeny of the Atlantic salmon, Salmo salar, with a novel system of interval (state) identification. Environ Biol Fishes 47:109–127

    Article  Google Scholar 

  • Gotz W, Kasper M, Fischer G, Herken R (1995) Intermediate filament typing of the human embryonic and fetal notochord. Cell Tissue Res 280(2):455–462

    Article  PubMed  CAS  Google Scholar 

  • Grotmol S, Kryvi H, Nordvik K, Totland GK (2003) Notochord segmentation may lay down the pathway for the development of the vertebral bodies in the Atlantic salmon. Anat Embryol 207:263–272

    Article  PubMed  Google Scholar 

  • Grotmol S, Nordvik K, Kryvi H, Totland GK (2005) A segmental pattern of alkaline phosphatase activity within the notochord coincides with the initial formation of the vertebral bodies. J Anat 206:427–436

    Article  PubMed  CAS  Google Scholar 

  • Grotmol S, Kryvi H, Keynes R, Krossøy C, Nordvik K, Totland GK (2006) Stepwise enforcement of the notochord and its intersection with the myoseptum: an evolutionary path leading to development of the vertebra? J Anat 209:339–357

    Article  PubMed  Google Scholar 

  • Hendrickson HS, Hendrickson EK, Johnson ID, Farber SA (1999) Intramolecularly quenched BODIPY-labeled phospholipid analogs in phospholipase A (2) and platelet-activating factor acetylhydrolase assays and in vivo fluorescence imaging. Anal Biochem 276:27–35

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  PubMed  CAS  Google Scholar 

  • Krossøy C, Ornsrud R, Wargelius A (2009) Differential gene expression of bgp and mgp in trabecular and compact bone of Atlantic salmon (Salmo salar L.) vertebrae. J Anat 215:663–672

    Article  PubMed  Google Scholar 

  • Lecoin L, Sii-Felice K, Pouponnot C, Eychène A, Felder-Schmittbuhl MP (2004) Comparison of maf gene expression patterns during chick embryo development. Gene Expression Patterns 4:35–46

    Article  PubMed  CAS  Google Scholar 

  • Lehtonen E, Stefanivić V, Saraga-Babić M (1995) Changes in expressions of intermediate filaments and desmoplakins during development of human notochord. Differentiation 59:43–49

    Article  PubMed  CAS  Google Scholar 

  • Malde K, Schneeberger K, Coward E, Jonassen I (2006) RBR: library-less repeat detection for ESTs. Bioinformatics 22:2232–2236

    Article  PubMed  CAS  Google Scholar 

  • Meijer AH, van der Sar AM, Cunha C, Lamers GE, Laplante MA, Kikuta H, Bitter W, Becker TS, Spaink HP (2008) Identification and real-time imaging of a myc-expressing neutrophil population involved in inflammation and mycobacterial granuloma formation in zebrafish. Dev Comp Immunol 32:36–49

    Article  PubMed  CAS  Google Scholar 

  • Miao M, Bruce AE, Bhanji T, Davis EC, Keeley FW (2007) Differential expression of two tropoelastin genes in zebrafish. Matrix Biol 26:115–124

    Article  PubMed  CAS  Google Scholar 

  • Nordvik K, Kryvi H, Totland GK, Grotmol S (2005) The salmon vertebral body develops through mineralization of two preformed tissues that are encompassed by two layers of bone. J Anat 206:103–114

    Article  PubMed  Google Scholar 

  • Olsvik PA, Lie KK, Jordal AE, Nilsen TO, Hordvik I (2005) Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon. BMC Mol Biol 17:6–21

    Google Scholar 

  • Page M (1989) Changing patterns of cytokeratins and vimentin in the early chick embryo. Development 105(1):97–107

    PubMed  CAS  Google Scholar 

  • Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651–652

    Article  PubMed  CAS  Google Scholar 

  • Stemple DL (2005) Structure and function of the notochord: an essential organ for chordate development. Development 132:2503–2512

    Article  PubMed  CAS  Google Scholar 

  • Suzuki MM, Satoh N (2000) Genes expressed in the amphioxus notochord revealed by EST analysis. Dev Biol 224:168–177

    Article  PubMed  CAS  Google Scholar 

  • The UniProt C (2008) The Universal Protein Resource (UniProt). Nucl Acids Res 36:190–195

    Article  Google Scholar 

  • Thisse B, Pflumio S, Fürthauer M, Loppin B, Heyer V, Degrave A, Woehl R, Lux A, Steffan T, Charbonnier XQ, Thisse C (2001) Expression of the zebrafish genome during embryogenesis. ZFIN Direct Data Submission (http://zfin.org)

  • Vihtelic TS, Fadool JM, Gao J, Thornton KA, Hyde DR, Wistow G (2005) Expressed sequence tag analysis of zebrafish eye tissues for NEIBank. Mol Vis 11:1083–1100

    PubMed  CAS  Google Scholar 

  • Visconti RP, Barth JL, Keeley FW, Little CD (2003) Codistribution analysis of elastin and related fibrillar proteins in early vertebrate development. Matrix Biol 22:109–121

    Article  PubMed  CAS  Google Scholar 

  • Wang N, Stamenovic D (2002) Mechanics of vimentin intermediate filaments. J Muscle Res Cell Motility 23:535–540

    Article  Google Scholar 

  • Wargelius A, Fjelldal PG, Nordgarden U, Grini A, Krossøy C, Grotmol S, Totland GK, Hansen T (2010) Collagen type XI (α1) may be involved in the structural plasticity of the vertebral column in Atlantic salmon (Salmo salar L.). J Exp Biol 213:1207–1216

    Article  PubMed  CAS  Google Scholar 

  • Witten P, Obach A, Huysseune A, Baeverfjord G (2006) Vertebrae fusion in Atlantic salmon (Salmo salar): development, aggravation and pathways of containment. Aquaculture 258:164–172

    Article  Google Scholar 

  • Ytteborg E, Torgersen JS, Pedersen ME, Baeverfjord G, Hannesson KO, Takle H (2010) Remodeling of the notochord during development of vertebral fusions in Atlantic salmon (Salmo salar). Cell Tissue Res 342:363–376

    Article  PubMed  Google Scholar 

  • Zhang C, Zhang MX, Shen YH, Burks JK, Li XN, LeMaire SA, Yoshimura K, Aoki H, Matsuzaki M, An FS, Engler DA, Matsunami RK, Coselli JS, Zhang Y, Wang XL (2008) Role of NonO-histone interaction in TNFalpha-suppressed prolyl-4-hydroxylase alpha1. BBA 1783(8):1517–1528

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank the local fish-farm facilities at Tveitevågen (Marine Harvest AS, Askøy, Norway), Alvøen (Firda Settefisk Alvøen AS, Bergen, Norway), Lønningdal (Ewos Innovation AS, Osøyro, Norway), Lygrepollen (Bolaks AS, Nordtveitgrend, Norway) and Ask (Strømsnes Akvakultur AS, Askøy, Norway) for kindly donating salmon eggs and fry for the research project. We also thank Heidi Kongshaug for expert technical advice and assistance during the construction and production of the normalized notochord cDNA library, and Kjell Toklum, Nina Karin Ellingsen, and Teresa Cieplinska for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Wargelius.

Additional information

The study was supported by the Research Council of Norway (Project no 172483).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Primer sequences of the selected 170 genes analyzed by qPCR. The primer sequences that were designed and purchased for the analyses of 170 genes were selected on the basis of BLAST hits and GO annotations, for screening of differential gene expression in notochord compared to other salmon tissues (PDF 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sagstad, A., Grotmol, S., Kryvi, H. et al. Identification of vimentin- and elastin-like transcripts specifically expressed in developing notochord of Atlantic salmon (Salmo salar L.). Cell Tissue Res 346, 191–202 (2011). https://doi.org/10.1007/s00441-011-1262-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-011-1262-y

Keywords

Navigation