Skip to main content
Log in

Dicyemid’s dilemma: structure versus genes. The unorthodox structure of dicyemid reproduction

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The clear phylogenetic status of the enigmatic Phylum Dicyemida is still uncertain. Their primitive body plan lacks essential metazoan synapomorphies, while genetic data favor a kinship with higher lophotrochozoans. This ultrastructural study increases the confusion about this phylum by presenting an unusual gonad and sperm structure lacking all synapomorphies essential for the various phyla of the lophotrochozoans, either free-living ones or parasites. In Dicyema typus, gonadogenesis is reduced to a single somatic cell, i.e., the infusorigen’s axial cell that functions as a somatic gonadal founder cell as soon as a spermatogonium takes residence in its cytoplasm. The spermiogenic cells resulting therefrom are not connected by intercellular bridges and permanently contain a bundle of microtubules in their cytoplasm, obviously a kind of “dormant” spindle having assembled without centrosomes. Primary spermatocytes develop so-called polycomplexes, multiple synaptinemal complexes. The structure of the sperm is based on a certain kind of somatic cell that has been minimally adapted to function as a sperm. The mature sperm consists in only three organelles: an ovoid nucleus with a somatic chromatin structure, numerous pore complexes and a centrally arranged cluster of coiled tubular structures; a bundle of microtubules embedded into a rim running along the nucleus longitudinal surface, projecting out of the cell like a spear; and a lipid vesicle tightly attached to one pole of the nucleus, touching there the adjacent bundle of microtubules. Immunelectron microscopy confirms the somatic condition of mature sperm, revealing somatic histone H1 immunoreactivity over the nucleus, which can be interpreted as synapomorphy shared with Protozoa, Porifera and Cnidaria. Fertilization occurs as selfing, where the sperm penetrates, “bundle of microtubules first”, a primary oocyte attached vis-à-vis on the other side of the plasma membrane of the infusorigen’s axial cell. This somatic situation points to an ancient evolutionary model rather than to a condition caused by retrogression due to their life as commensals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ausio J (1995) Histone H1 and the evolution of the nuclear sperm-specific proteins. In: Jamieson BGM, Ausio J, Justine JL (eds) Advances in Spermatozoal Phylogeny and Taxonomy. Mem Mus Natl Hist Nat, Paris, pp 447–462

  • Ausio J, vanVeghel MLJ, Gomez R, Barreda D (1997) The sperm nuclear basic proteins (SNBPs) of the sponge Neofibularia nolitangere. Implications for the molecular evolution of SNBPs. J Mol Evol 45:91–96

    Article  PubMed  CAS  Google Scholar 

  • Baccetti B, Afzelius B (1976) The biology of the sperm cell. Karger, Basel

    Google Scholar 

  • Beneden van E (1882) Contribution a l’histoire des Dicyémides. Arch Biol 3:195–228

    Google Scholar 

  • Bresciani J, Fenchel T (1965) Studies on dicyemid Mesozoa. I the fine structure of the adult (the nematogen and rhombogen stage). Vidensk Medd Dan Naturhist Foren 128:85–92

    Google Scholar 

  • Cavalier-Smith T (1993) Kingdom protozoa and its 18 phyla. Microbiol Rev 58:953–994

    Google Scholar 

  • Czaker R (2000) Extracellular matrix (ECM) components in a very primitive multicellular animal, the dicyemid mesozoan Kantharella antarctica. Anat Rec 259:52–59

    Article  PubMed  CAS  Google Scholar 

  • Dallai R, Mazzini M (1983) Spermatozoa and diptera phylogeny. In: Andrè J (ed) The sperm cell. Martinus Nijhoff, The Hague, pp 446–450

    Google Scholar 

  • Dodson EO (1956) A note on the systematic position of the mesozoa. Syst Zool 5:37–40

    Article  Google Scholar 

  • Franzén A (1956) On spermiogenesis, morphology of the spermatozoon and biology of fertilization among invertebrates. Zool Bidr Upps 31:335–482

    Google Scholar 

  • Franzén A (1970) Phylogenetic aspects of the morphology of the spermatozoan and spermio-genesis. In: Baccetti B (ed) Comparative spermatology. Academic, New York, pp 29–46

    Google Scholar 

  • Furuya H, Tsuneki G, Koshida Y (1993) The development of the hermaphroditic gonad in four species of dicyemid mesozoans. Zool Sci 10:455–466

    Google Scholar 

  • Furuya H, Tsuneki G, Koshida Y (1996) The cell lineages of two types of embryos and hermaphroditic gonad in dicyemid mesozoans. Dev Growth Differ 38:453–463

    Article  Google Scholar 

  • Furuya H, Tsuneki K, Koshida Y (1997) Fine structure of dicyemid mesozoans with special reference to cell junctions. J Morphol 231:297–305

    Article  Google Scholar 

  • Goffredo S, Teló T, Scanabissi F (2000) Ultrastructural observations of the spermatogenesis of the hermaphroditic, solitary coral balanophyllia europaea (Anthozoa, Scleractinia). Zoomorphology 119:231–240

    Article  Google Scholar 

  • Goldstein P (1987) Multiple synaptinemal complexes (polycomplexes): origin, structure and function. Cell Biol Int Rep 11:759–796

    Article  PubMed  CAS  Google Scholar 

  • Guo GQ, Zheng GC (2004) Hypotheses for functions of intercellular bridges in male germ cell development and its cellular mechanisms. J Theor Biol 229:139–146

    Article  PubMed  CAS  Google Scholar 

  • Heald R, Tournebize R, Blank T, Sandaltzopoulos R, Becker R, Hyman A, Karsenti E (1996) Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382:420–425

    Article  PubMed  CAS  Google Scholar 

  • Hinsch GW (1974) Comparative ultrastructure of cnidarian sperm. Am Zool 14:457–465

    Google Scholar 

  • Hori H, Osawa S (1987) Origin and evolution of organisms as deduced from 5 S ribosomal RNA sequences. Mol Biol Evol 4:445–472

    PubMed  CAS  Google Scholar 

  • Hyman LH (1940) The invertebrates, vol 1. McGraw-Hill, New York

    Google Scholar 

  • Jamieson BGM (1987) The ultrastructure and phylogeny of insect spermatozoa. Cambridge University Press, Cambridge

    Google Scholar 

  • Jamieson BGM, Ausio J, Justine JL (1995) Advances in spermatozoal phylogeny and taxonomy. Mem Mus Natl Hist Nat, Paris

    Google Scholar 

  • Justine JL (1995) Spermatozoal ultrastructure and phylogeny in the parasitic Platyhelminthes. In: Jamieson BGM, Ausio J, Justine JL (eds) Advances in spermatozoal phylogeny and taxonomy. Mem Mus Natl Hist Nat, Paris, pp 55–86

    Google Scholar 

  • Kasinski HE (1995) Evolution and origin of sperm nuclear basic proteins. In: Jamieson BGM, Ausio J, Justine JL (eds) Advances in spermatozoal phylogeny and taxonomy. Mem Mus Natl Hist Nat, Paris, pp 463–473

    Google Scholar 

  • Katayama T, Wada H, Furuya H, Satoh N, Yamamoto M (1995) Phylogenetic position of the dicyemid mesozoa inferred from 18S rDNA sequences. Biol Bull 189:81–90

    Article  PubMed  CAS  Google Scholar 

  • Kessel RG (1992) A last frontier in cellular organelles. Int Rev Cytol 133:43–120

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Furuya H, Holland PWH (1999) Dicyemids are higher animals. Nature 401:762

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Furuya H, Wada H (2009) Molecular marker compairing the extremely simple body plan of dicyemids to that of lophotrochozoans: insight from the expression patterns of Hox, Otx and brachyury. Evol Dev 11:582–589

    Article  PubMed  CAS  Google Scholar 

  • Lapan EA, Morowitz HJ (1972) The Mesozoa. Sci Am 222:94–101

    Article  Google Scholar 

  • Matsubara JA, Dudley PL (1976) Fine structural studies of the dicyemid mesozoan Dicyemmenea californica McConnaughey. J Parasitol 62:377–389

    Article  Google Scholar 

  • McConnaughey BH (1951) The life cyle of the dicyemid mesozoa. Univ Calif Publ Zool 55:295–336

    Google Scholar 

  • Morales CR, Wu XQ, Hecht NB (1998) The DNA/RNA binding protein TB-RBP moves from the nucleus to the cytoplasm and through intercellular bridges in male germ cells. Dev Biol 201:113–123

    Article  PubMed  CAS  Google Scholar 

  • Noto T, Endoh H (2004) A ‘chimera’ theory on the origin of dicyemid mesozoans: evolution driven by frequent lateral gene transfer from host to parasite. Biosystems 73:73–83

    Article  PubMed  CAS  Google Scholar 

  • Noto T, Yazaki K, Endoh H (2003) Developmentally regulated extrachromosomal circular DNA formation in the mesozoan Dicyema japonicum. Chromosoma 111:359–368

    Article  PubMed  CAS  Google Scholar 

  • Nouvel H (1947) Les Dicyémids. Arch Biol 58:54–220

    Google Scholar 

  • Ogino K, Tsuneki K, Furuya H (2010) Unique genome of dicyemid mesozoan: Highly shortened spliceosomal introns in conservative exon/intron structure. Gene 449:70–76

    Article  PubMed  CAS  Google Scholar 

  • Ohama T, Kumazaki K, Hori H, Osawa S (1984) Evolution of multicellular animals as deduced from 5S ribosomal RNA-squences: a possible early emergence of the Mesozoa. Nucleic Acids Res 12:5101–5108

    Article  PubMed  CAS  Google Scholar 

  • Paulus W (1989) Ultrastructural investigation of spermatogenesis in Spongilla lacustris and Ephydatia fluviatilis (Porifera, Spongillidae). Zoomorphology 109:123–130

    Article  Google Scholar 

  • Pawlowski J, Montoya-Burgos JI, Fahrni FJ, Wüest J, Zaninetti L (1996) Origin of the mesozoa inferred from 18S rRNA gene sequences. Mol Biol Evol 13:1128–1132

    PubMed  CAS  Google Scholar 

  • Ridley RK (1969) Electron microscopic studies on dicyemid mesozoa. II Infusorigen and infusoriform stages. J Parasitol 55:779–793

    Article  Google Scholar 

  • Rizzo PJ, Bradley W, Morris RL (1985) Histones of the unicellular algae Olisthodiscus luteus. Biochemistry 24:1727–1732

    Article  CAS  Google Scholar 

  • Rocchini C, Marx MR, von Carosfeld JS, Kasinsky HE, Rosenberg E, Sommer F, Ausio J (1996) Replacement of nucleosomal histones by histone H1-like proteins during spermiogenesis in Cnidaria: evolutionary implications. J Mol Evol 42:240–246

    Article  CAS  Google Scholar 

  • Short RB, Damian RT (1967) Oogenesis, fertilization, and first cleavage of Dicyema aegira. J Parasitol 53:186–195

    Article  PubMed  CAS  Google Scholar 

  • Steffen W, Fuge H, Dietz R, Bastmeyer M, Muller G (1986) Aster-free spindle poles in insect spermatocytes, evidence for chromosome induced spindle formation? J Cell Biol 102:1679–1867

    Article  PubMed  CAS  Google Scholar 

  • Steiner SSC (1991) Sperm morphology of scleractinians from the Caribbean. Hydrobiologia 216(217):131–135

    Article  Google Scholar 

  • Stunkard HW (1954) The life history and systematic relations of the mesozoa. Q Rev Biol 29:230–244

    Article  PubMed  CAS  Google Scholar 

  • Subirana JA, Cozcolluela C, Palau J, Unzeta M (1973) Protamines and other basic proteins from spermatozoan of molluscs. Biochim Biophys Acta 317:364–379

    PubMed  CAS  Google Scholar 

  • Sym M, Roeder GS (1995) Zip 1-induced changes in synaptonemal complex structure and polycomplex assembly. J Cell Biol 128:455–466

    Article  PubMed  CAS  Google Scholar 

  • Vasquez GH, Chavez B, Martin CT (1973) A preferential staining method for chromatin in electron microscopy. J Microsc 16:243–246

    Google Scholar 

Download references

Acknowledgements

The author thanks Ms. Marianne Steiner and Ms. Erika Vanyek for their skilled technical assistance and Ms. Christa Farrenkopf for her competent editorial cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renate Czaker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czaker, R. Dicyemid’s dilemma: structure versus genes. The unorthodox structure of dicyemid reproduction. Cell Tissue Res 343, 649–658 (2011). https://doi.org/10.1007/s00441-010-1124-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-1124-z

Keywords

Navigation