Skip to main content
Log in

Isolation of oogonia from ovaries of the sea urchin Strongylocentrotus nudus

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The presence of oogonia in the ovaries of adult females is typical in species with a broadcast spawning reproductive strategy, including invertebrates and lower vertebrates. In sea urchins, difficulties in the study of oogonia arise from the small number of these cells and the lack of specific markers for their identification. Therefore, more reliable methods are needed for identifying and manipulating oogonial cells in quantities sufficient for experimentation. Homologs of the DEAD-box RNA helicase vasa expressed in germline cells have been proposed for use as markers to detect germline cells in diverse species. We have developed a method for the isolation of sea urchin oogonia by using immunocytochemistry with vasa antibodies, together with reverse transcription and the polymerase chain reaction to detect the expression of Sp-vasa and Sp-nanos2 homologs and a morphological approach to identify germline cells in sea urchin ovaries and cell fractions isolated from the ovarian germinal epithelium. This method has allowed us to obtain 15%-18% of small oogonia with 70%-75% purity from the total amount of isolated germ cells. Our findings represent the first methodological basis for obtaining cell populations containing sea urchin oogonia; this method might be useful as a tool for further investigations of the early stages of sea urchin oogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aoki Y, Nakamura S, Ishikawa Y, Tanaka M (2009) Expression and syntenic analyses of four nanos genes in medaka. Zool Sci 26:112–118

    Article  CAS  PubMed  Google Scholar 

  • Bachvarova RF, Masi T, Drum M, Parker N, Mason K, Patient R, Johnson AD (2004) Gene expression in the axolotl germ line: Axdazl, Axvh, Axoct-4, and Axkit. Dev Dyn 231:871–880

    Article  CAS  PubMed  Google Scholar 

  • Bhat KM (1999) The posterior determinant gene nanos is required for the maintenance of the adult germline stem cells during Drosophila oogenesis. Genetics 151:1479–1492

    CAS  PubMed  Google Scholar 

  • Byrne M, Villinski JT, Cisternas P, Siegel RK, Popodi E, Raff RA (1999) Maternal factors and the evolution of developmental mode: evolution of oogenesis in Heliocidaris erythrogramma. Dev Genes Evol 209:275–283

    Article  CAS  PubMed  Google Scholar 

  • Chatlynne LG (1969) A histochemical study of oogenesis in the sea urchin, Strongylocentrotus purpuratus. Biol Bull 136:167–184

    Article  CAS  PubMed  Google Scholar 

  • De Felici M (2000) Regulation of primordial germ cell development in the mouse. Int J Dev Biol 44:575–580

    PubMed  Google Scholar 

  • DeFalco T, Capel B (2009) Gonad morphogenesis in vertebrates: divergent means to a convergent end. Annu Rev Cell Dev Biol 25:457–482

    Article  CAS  PubMed  Google Scholar 

  • Di Carlo M, Romancino DP, Montana G, Ghersi G (1994) Spatial distribution of two maternal messengers in Paracentrotus lividus during oogenesis and embryogenesis. Proc Natl Acad Sci USA 91:5622–5626

    Article  PubMed  Google Scholar 

  • Draper BW (2010) Using transgenics to study the mechanism of oocyte production in zebrafish. Transgenic Res 19:138–139

    Google Scholar 

  • Draper BW, McCallum CM, Moens CB (2007) nanos1 is required to maintain oocyte production in adult zebrafish. Dev Biol 305:589–598

    Article  CAS  PubMed  Google Scholar 

  • Forbes A, Lehmann R (1998) Nanos and Pumilio have critical roles in the development and function of Drosophila germline stem cells. Development 125:679–690

    CAS  PubMed  Google Scholar 

  • Fuji A (1960a) Studies on the biology of the sea urchin. I. Superficial and histological gonadal changes of two sea urchins, Strongylocentrotus nudus and S. intermedius. Bull Fac Fish Hokkaido Univ 11:1–14

    Google Scholar 

  • Fuji A (1960b) Studies on the biology of the sea urchin. III. Reproductive cycles of two sea urchins, Strongylocentrotus nudus and S. intermedius in Southern Hokkaido. Bull Fac Fish Hokkaido Univ 11:49–57

    Google Scholar 

  • Fujii T, Mitsunaga-Nakatsubo K, Saito I, Iida H, Sakamoto N, Akasaka K, Yamamoto T (2006) Developmental expression of HpNanos, the Hemicentrotus pulcherrimus homologue of nanos. Gene Expr Patterns 6:572–577

    Article  CAS  PubMed  Google Scholar 

  • Gassei K, Ehmcke J, Schlatt S (2009) Efficient enrichment of undifferentiated GFR alpha 1+ spermatogonia from immature rat testis by magnetic activated cell sorting. Cell Tissue Res 337:177–183

    Article  CAS  PubMed  Google Scholar 

  • Harrington LH, Walker CW, Lesser MP (2007) Stereological analysis of nutritive phagocytes and gametogenic cells during the annual reproductive cycle of the green sea urchin, Strongylocentrotus droebachiensis. Invertebr Biol 126:202–209

    Article  Google Scholar 

  • Houston DW, King ML (2000) Germ plasm and molecular determinants of germ cell fate. Curr Top Dev Biol 50:155–181

    Article  CAS  PubMed  Google Scholar 

  • Juliano CE, Voronina E, Stack C, Aldrich M, Cameron AR, Wessel GM (2006) Germ line determinants are not localized early in sea urchin development, but do accumulate in the small micromere lineage. Dev Biol 300:406–415

    Article  CAS  PubMed  Google Scholar 

  • Juliano CE, Yajima M, Wessel GM (2010) Nanos functions to maintain the fate of the small micromere lineage in the sea urchin embryo. Dev Biol 337:220–232

    Article  CAS  PubMed  Google Scholar 

  • Kai T, Williams D, Spradling AC (2005) The expression profile of purified Drosophila germline stem cells. Dev Biol 283:486–502

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Yamada M, Asaoka M, Kitamura T (1996) Essential role of the posterior morphogen nanos for germline development in Drosophila. Nature 380:708–711

    Article  CAS  PubMed  Google Scholar 

  • Lehmann R, Nüsslein-Volhard C (1991) The maternal gene nanos has a central role in posterior pattern formation of the Drosophila embryo. Development 112:679–691

    CAS  PubMed  Google Scholar 

  • Liu Y, Wu C, Lyu Q, Yang D, Albertini DF, Keefe DL, Liu L (2007) Germline stem cells and neo-oogenesis in the adult human ovary. Dev Biol 306:112–120

    Article  CAS  PubMed  Google Scholar 

  • Lobascio AM, Klinger FG, Scaldaferri ML, Farini D, De Felici M (2007) Analysis of programmed cell death in mouse fetal oocytes. Reproduction 134:241–252

    Article  CAS  PubMed  Google Scholar 

  • Matova N, Cooley L (2001) Comparative aspects of animal oogenesis. Dev Biol 231:291–320

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto L, Kasamatsu H, Pikó L, Vinograd J (1974) Mitochondrial DNA replication in sea urchin oocytes. J Cell Biol 63:146–159

    Article  CAS  PubMed  Google Scholar 

  • Millonig G, Bosco M, Giambertone L (1968) Fine structure analysis of oogenesis in sea urchins. J Exp Zool 169:293–313

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S, Kobayashi K, Nishimura T, Higashijima S, Tanaka M (2010) Identification of germline stem cells in the ovary of the teleost medaka. Science 328:1561–1563

    Article  CAS  PubMed  Google Scholar 

  • Raz E (2000) The function and regulation of vasa-like genes in germ-cell development. Genome Biol 1:1017

    Article  Google Scholar 

  • Saiti D, Lacham-Kaplan O (2007) Mouse germ cell development in-vivo and in-vitro. Biomark Insights 2:241–252

    PubMed  Google Scholar 

  • Schupbach T, Wieschaus E (1986) Germline autonomy of maternal-effect mutations altering the embryonic body pattern of Drosophila. Dev Biol 113:443–448

    Article  CAS  PubMed  Google Scholar 

  • Song JL, Wessel GM (2007) Genes involved in the RNA interference pathway are differentially expressed during sea urchin development. Dev Dyn 236:3180–3190

    Article  CAS  PubMed  Google Scholar 

  • Song JL, Wong JL, Wessel GM (2006) Oogenesis: single cell development and differentiation. Dev Biol 300:385–405

    Article  CAS  PubMed  Google Scholar 

  • Voronina E, Lopez M, Juliano CE, Gustafson E, Song JL, Extavour C, George S, Oliveri P, McClay D, Wessel G (2008) Vasa protein expression is restricted to the small micromeres of the sea urchin, but is inducible in other lineages early in development. Dev Biol 314:276–286

    Article  CAS  PubMed  Google Scholar 

  • Walker CW, Lesser MP (1998) Manipulation of food and photoperiod promotes out-of-season gametogenesis in the green sea urchin, Strongylocentrotus droebachiensis: implications for aquaculture. Mar Biol 132:663–676

    Article  Google Scholar 

  • Walker CW, Unuma T, McGinn NA, Harrington LM, Lesser MP (2001) Reproduction of sea urchins. In: Lawrence JM (ed) Edible sea urchins: biology and ecology, vol 32. Developments in aquaculture and fisheries science. Elsevier, Amsterdam, pp 5–26

    Chapter  Google Scholar 

  • Walker CW, Harrington LM, Lesser MP, Fagerberg WR (2005) Nutritive phagocyte incubation chambers provide a structural and nutritive microenvironment for germ cells of Strongylocentrotus droebachiensis, the green sea urchin. Biol Bull 209:31–48

    Article  PubMed  Google Scholar 

  • Walker CW, Unuma T, Lesser MP (2007) Gametogenesis and reproduction of sea urchins. In: Lawrence JM (ed) Edible sea urchins: biology and ecology, vol 37. Developments in aquaculture and fisheries science. Elsevier, Amsterdam, pp 11–33

    Google Scholar 

  • Wang Z, Lin H (2004) Nanos maintains germline stem cell self-renewal by preventing differentiation. Science 303:2016–2019

    Article  CAS  PubMed  Google Scholar 

  • Wessel GM, Juliano CE, Wong JL, Gustafson EA, Song JL (2010) Molecular markers of oocyte and primordial germ cell development in the sea urchin. In: Harris LG, Boetger A, Walker CW, Lesser MP (eds) Echinoderms: Durham. Taylor and Francis Group, London, pp 517–528

    Google Scholar 

  • Xu H, Gui J, Hong Y (2005) Differential expression of vasa RNA and protein during spermatogenesis and oogenesis in the gibel carp (Carassius auratus gibelio), a bisexually and gynogenetically reproducing vertebrate. Dev Dyn 233:872–882

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mrs. Irina Barsegova for her help in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin V. Yakovlev.

Additional information

This work was supported by grants from the Far Eastern Branch of Russian Academy of Sciences (09-II-SB-06-001 and 09-I-P22-04) and Siberian Branch of the Russian Academy of Sciences (N 48).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakovlev, K.V., Battulin, N.R., Serov, O.L. et al. Isolation of oogonia from ovaries of the sea urchin Strongylocentrotus nudus . Cell Tissue Res 342, 479–490 (2010). https://doi.org/10.1007/s00441-010-1074-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-1074-5

Keywords

Navigation