Skip to main content

Advertisement

Log in

Therapeutic targeting of the innate immune system in domestic animals

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Since first being described in the fruit fly Drosophila melanogaster, the knowledge regarding Toll-like receptors (TLRs) has transformed our understanding of immunology. TLRs are a family of conserved pattern recognition receptors (PRR) that recognise specific microbial-associated molecular patterns and allow the cell to distinguish between self and non-self materials. The very property of the TLRs, to link innate and adaptive immunity, offers a novel opportunity to develop vaccines that engage TLR signalling. The presence of TLR ligands as adjuvants in conjunction with a vaccine is shown to increase the efficacy and response to the immunisation with a particular antigen. Here, we focus on the findings pertaining to TLR ligands as adjuvants and discuss the importance of these studies in the development of an optimal vaccine in farm and companion animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agrawal S, Kandimalla ER (2007) Synthetic agonists of Toll-like receptors 7, 8 and 9. Biochem Soc Trans 35:1461–1467

    Article  CAS  PubMed  Google Scholar 

  • Akashi S, Nagai Y, Ogata H, Oikawa M, Fukase K, Kusumoto S, Kawasaki K, Nishijima M, Hayashi S, Kimoto M, Miyake K (2001) Human MD-2 confers on mouse Toll-like receptor 4 species-specific lipopolysaccharide recognition. Int Immunol 13:1595–1599

    Article  CAS  PubMed  Google Scholar 

  • Alexopoulou L, Thomas V, Schnare M, Lobet Y, Anguita J, Schoen RT, Medzhitov R, Fikrig E, Flavell RA (2002) Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice. Nat Med 8:878–884

    CAS  PubMed  Google Scholar 

  • Allenspach K, House A, Smith K, McNeill FM, Hendricks A, Elson-Riggins J, Riddle A, Steiner JM, Werling D, Garden OA, Catchpole B, Suchodolski JS (2010) Evaluation of mucosal bacteria and histopathology, clinical disease activity and expression of Toll-like receptors in German shepherd dogs with chronic enteropathies. Vet Microbiol. doi:10.1016/j.vetmic.2010.05.025

  • Alves MP, Neuhaus V, Guzylack-Piriou L, Ruggli N, McCullough KC, Summerfield A (2007) Toll-like receptor 7 and MyD88 knockdown by lentivirus-mediated RNA interference to porcine dendritic cell subsets. Gene Ther 14:836–844

    Article  CAS  PubMed  Google Scholar 

  • Andersen P, Doherty TM (2005) The success and failure of BCG – implications for a novel tuberculosis vaccine. Nat Rev Microbiol 3:656–662

    Article  CAS  PubMed  Google Scholar 

  • Andersen-Nissen E, Smith KD, Bonneau R, Strong RK, Aderem A (2007) A conserved surface on Toll-like receptor 5 recognizes bacterial flagellin. J Exp Med 204:393–403

    Article  CAS  PubMed  Google Scholar 

  • Andonegui G, Bonder CS, Green F, Mullaly SC, Zbytnuik L, Raharjo E, Kubes P (2003) Endothelium-derived Toll-like receptor-4 is the key molecule in LPS-induced neutrophil sequestration into lungs. J Clin Invest 111:1011–1020

    CAS  PubMed  Google Scholar 

  • Booth JS, Griebel PJ, Babiuk LA, Mutwiri GK (2009) A novel regulatory B-cell population in sheep Peyer's patches spontaneously secretes IL-10 and downregulates TLR9-induced IFNalpha responses. Mucosal Immunol 2:265–275

    Article  CAS  PubMed  Google Scholar 

  • Booth JS, Buza JJ, Potter A, Babiuk LA, Mutwiri GK (2010) Co-stimulation with TLR7/8 and TLR9 agonists induce down-regulation of innate immune responses in sheep blood mononuclear and B cells. Dev Comp Immunol 34:572–578

    Article  CAS  PubMed  Google Scholar 

  • Boukhvalova MS, Prince GA, Soroush L, Harrigan DC, Vogel SN, Blanco JC (2006) The TLR4 agonist, monophosphoryl lipid A, attenuates the cytokine storm associated with respiratory syncytial virus vaccine-enhanced disease. Vaccine 24:5027–5035

    Article  CAS  PubMed  Google Scholar 

  • Brown WC, Corral RS (2002) Stimulation of B lymphocytes, macrophages, and dendritic cells by protozoan DNA. Microbes Infect 4:969–974

    Article  CAS  PubMed  Google Scholar 

  • Brown WC, Suarez CE, Shoda LK, Estes DM (1999) Modulation of host immune responses by protozoal DNA. Vet Immunol Immunopathol 72:87–94

    Article  CAS  PubMed  Google Scholar 

  • Brown GD, Herre J, Williams DL, Willment JA, Marshall AS, Gordon S (2003) Dectin-1 mediates the biological effects of beta-glucans. J Exp Med 197:1119–1124

    Article  CAS  PubMed  Google Scholar 

  • Brownlie R, Zhu J, Allan B, Mutwiri GK, Babiuk LA, Potter A, Griebel P (2009) Chicken TLR21 acts as a functional homologue to mammalian TLR9 in the recognition of CpG oligodeoxynucleotides. Mol Immunol 46:3163–3170

    Article  CAS  PubMed  Google Scholar 

  • Bryant CE, Ouellette A, Lohmann K, Vandenplas M, Moore JN, Maskell DJ, Farnfield BA (2007) The cellular Toll-like receptor 4 antagonist E5531 can act as an agonist in horse whole blood. Vet Immunol Immunopathol 116:182–189

    Article  CAS  PubMed  Google Scholar 

  • Buwitt-Beckmann U, Heine H, Wiesmuller KH, Jung G, Brock R, Akira S, Ulmer AJ (2005a) Toll-like receptor 6-independent signaling by diacylated lipopeptides. Eur J Immunol 35:282–289

    Article  CAS  PubMed  Google Scholar 

  • Buwitt-Beckmann U, Heine H, Wiesmuller KH, Jung G, Brock R, Ulmer AJ (2005b) Lipopeptide structure determines TLR2 dependent cell activation level. FEBS J 272:6354–6364

    Article  CAS  PubMed  Google Scholar 

  • Buwitt-Beckmann U, Heine H, Wiesmuller KH, Jung G, Brock R, Akira S, Ulmer AJ (2006) TLR1- and TLR6-independent recognition of bacterial lipopeptides. J Biol Chem 281:9049–9057

    Article  CAS  PubMed  Google Scholar 

  • Buza J, Benjamin P, Zhu J, Wilson HL, Lipford G, Krieg AM, Babiuk LA, Mutwiri GK (2008) CD14+ cells are required for IL-12 response in bovine blood mononuclear cells activated with Toll-like receptor (TLR) 7 and TLR8 ligands. Vet Immunol Immunopathol 126:273–282

    Article  CAS  PubMed  Google Scholar 

  • Cheong C, Choi JH, Vitale L, He LZ, Trumpfheller C, Bozzacco L, Do Y, Nchinda G, Park SH, Dandamudi DB, Shrestha E, Pack M, Lee HW, Keler T, Steinman RM, Park CG (2010) Improved cellular and humoral immune responses in vivo following targeting of HIV Gag to dendritic cells within human anti-human DEC205 monoclonal antibody. Blood (in press)

  • Christ WJ, Asano O, Robidoux AL, Perez M, Wang Y, Dubuc GR, Gavin WE, Hawkins LD, McGuinness PD, Mullarkey MA et al (1995) E5531, a pure endotoxin antagonist of high potency. Science 268:80–83

    Article  CAS  PubMed  Google Scholar 

  • Daffis S, Samuel MA, Suthar MS, Gale M Jr, Diamond MS (2008) Toll-like receptor 3 has a protective role against West Nile virus infection. J Virol 82:10349–10358

    Article  CAS  PubMed  Google Scholar 

  • Dar A, Potter A, Tikoo S, Gerdts V, Lai K, Babiuk LA, Mutwiri G (2009) CpG oligodeoxynucleotides activate innate immune response that suppresses infectious bronchitis virus replication in chicken embryos. Avian Dis 53:261–267

    Article  PubMed  Google Scholar 

  • Dar A, Nichani A, Lai K, Potter A, Gerdts V, Babiuk LA, Mutwiri G (2010) All three classes of CpG ODNs up-regulate IP-10 gene in pigs. Res Vet Sci 88:242–250

    Article  CAS  PubMed  Google Scholar 

  • Farhat K, Riekenberg S, Heine H, Debarry J, Lang R, Mages J, Buwitt-Beckmann U, Roschmann K, Jung G, Wiesmuller KH, Ulmer AJ (2008) Heterodimerization of TLR2 with TLR1 or TLR6 expands the ligand spectrum but does not lead to differential signaling. J Leukoc Biol 83:692–701

    Article  CAS  PubMed  Google Scholar 

  • Forsbach A, Nemorin JG, Montino C, Muller C, Samulowitz U, Vicari AP, Jurk M, Mutwiri GK, Krieg AM, Lipford GB, Vollmer J (2008) Identification of RNA sequence motifs stimulating sequence-specific TLR8-dependent immune responses. J Immunol 180:3729–3738

    CAS  PubMed  Google Scholar 

  • Fox CB, Friede M, Reed SG, Ireton GC (2010) Synthetic and natural TLR4 agonists as safe and effective vaccine adjuvants. Subcell Biochem 53:303–321

    Article  PubMed  Google Scholar 

  • Franchini M, Schweizer M, Matzener P, Magkouras I, Sauter KS, Mirkovitch J, Peterhans E, Jungi TW (2006) Evidence for dissociation of TLR mRNA expression and TLR agonist-mediated functions in bovine macrophages. Vet Immunol Immunopathol 110:37–49

    Article  CAS  PubMed  Google Scholar 

  • Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM (2003) Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med 197:1107–1117

    Article  CAS  PubMed  Google Scholar 

  • Gay NJ, Gangloff M (2007) Structure and function of Toll receptors and their ligands. Annu Rev Biochem 76:141–165

    Article  CAS  PubMed  Google Scholar 

  • Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL (2001) Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 167:1882–1885

    CAS  PubMed  Google Scholar 

  • Gioannini TL, Teghanemt A, Zhang D, Coussens NP, Dockstader W, Ramaswamy S, Weiss JP (2004) Isolation of an endotoxin-MD-2 complex that produces Toll-like receptor 4-dependent cell activation at picomolar concentrations. Proc Natl Acad Sci USA 101:4186–4191

    Article  CAS  PubMed  Google Scholar 

  • Girard R, Pedron T, Uematsu S, Balloy V, Chignard M, Akira S, Chaby R (2003) Lipopolysaccharides from Legionella and Rhizobium stimulate mouse bone marrow granulocytes via Toll-like receptor 2. J Cell Sci 116:293–302

    Article  CAS  PubMed  Google Scholar 

  • Godowski PJ (2005) A smooth operator for LPS responses. Nat Immunol 6:544–546

    Article  CAS  PubMed  Google Scholar 

  • Guzylack-Piriou L, Balmelli C, McCullough KC, Summerfield A (2004) Type-A CpG oligonucleotides activate exclusively porcine natural interferon-producing cells to secrete interferon-alpha, tumour necrosis factor-alpha and interleukin-12. Immunology 112:28–37

    Article  CAS  PubMed  Google Scholar 

  • Hasan U, Chaffois C, Gaillard C, Saulnier V, Merck E, Tancredi S, Guiet C, Briere F, Vlach J, Lebecque S, Trinchieri G, Bates EE (2005) Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88. J Immunol 174:2942–2950

    CAS  PubMed  Google Scholar 

  • Hellman J, Tehan MM, Warren HS (2003) Murein lipoprotein, peptidoglycan-associated lipoprotein, and outer membrane protein A are present in purified rough and smooth lipopolysaccharides. J Infect Dis 188:286–289

    Article  CAS  PubMed  Google Scholar 

  • Hirschfeld M, Kirschning CJ, Schwandner R, Wesche H, Weis JH, Wooten RM, Weis JJ (1999) Cutting edge: inflammatory signaling by Borrelia burgdorferi lipoproteins is mediated by toll-like receptor 2. J Immunol 163:2382–2386

    CAS  PubMed  Google Scholar 

  • Hirschfeld M, Weis JJ, Toshchakov V, Salkowski CA, Cody MJ, Ward DC, Qureshi N, Michalek SM, Vogel SN (2001) Signaling by toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect Immun 69:1477–1482

    Article  CAS  PubMed  Google Scholar 

  • Hoebe K, Georgel P, Rutschmann S, Du X, Mudd S, Crozat K, Sovath S, Shamel L, Hartung T, Zahringer U, Beutler B (2005) CD36 is a sensor of diacylglycerides. Nature 433:523–527

    Article  CAS  PubMed  Google Scholar 

  • Hong-Geller E, Chaudhary A, Lauer S (2008) Targeting toll-like receptor signaling pathways for design of novel immune therapeutics. Curr Drug Discov Technol 5:29–38

    Article  CAS  PubMed  Google Scholar 

  • Huleatt JW, Nakaar V, Desai P, Huang Y, Hewitt D, Jacobs A, Tang J, McDonald W, Song L, Evans RK, Umlauf S, Tussey L, Powell TJ (2008) Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin. Vaccine 26:201–214

    Article  CAS  PubMed  Google Scholar 

  • Ioannou XP, Griebel P, Mena A, Gomis SM, Godson DL, Mutwiri G, Hecker R, Babiuk LA, van Drunen Littel-van den Hurk S (2003) Safety of CpG oligodeoxynucleotides in veterinary species. Antisense Nucleic Acid Drug Dev 13:157–167

    Article  CAS  PubMed  Google Scholar 

  • Ishizaka ST, Hawkins LD (2007) E6020: a synthetic Toll-like receptor 4 agonist as a vaccine adjuvant. Expert Rev Vaccines 6:773–784

    Article  CAS  PubMed  Google Scholar 

  • Jain V, Halle A, Halmen KA, Lien E, Charrel-Dennis M, Ram S, Golenbock DT, Visintin A (2008) Phagocytosis and intracellular killing of MD-2 opsonized gram-negative bacteria depend on TLR4 signaling. Blood 111:4637–4645

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Georgel P, Du X, Shamel L, Sovath S, Mudd S, Huber M, Kalis C, Keck S, Galanos C, Freudenberg M, Beutler B (2005) CD14 is required for MyD88-independent LPS signaling. Nat Immunol 6:565–570

    Article  CAS  PubMed  Google Scholar 

  • Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, Lee H, Lee JO (2007) Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130:1071–1082

    Article  CAS  PubMed  Google Scholar 

  • Jungi TW, Adler H, Adler B, Thony M, Krampe M, Peterhans E (1996) Inducible nitric oxide synthase of macrophages. Present knowledge and evidence for species-specific regulation Vet Immunol Immunopathol 54:323–330

    CAS  Google Scholar 

  • Kawai T, Akira S (2007) Antiviral signaling through pattern recognition receptors. J Biochem 141:137–145

    Article  CAS  PubMed  Google Scholar 

  • Keestra AM, de Zoete MR, van Aubel RA, van Putten JP (2008) Functional characterization of chicken TLR5 reveals species-specific recognition of flagellin. Mol Immunol 45:1298–1307

    Article  CAS  PubMed  Google Scholar 

  • Kim HM, Park BS, Kim JI, Kim SE, Lee J, Oh SC, Enkhbayar P, Matsushima N, Lee H, Yoo OJ, Lee JO (2007) Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell 130:906–917

    Article  CAS  PubMed  Google Scholar 

  • Kirschning CJ, Wesche H, Merrill Ayres T, Rothe M (1998) Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med 188:2091–2097

    Article  CAS  PubMed  Google Scholar 

  • Kurt-Jones EA, Popova L, Kwinn L, Haynes LM, Jones LP, Tripp RA, Walsh EE, Freeman MW, Golenbock DT, Anderson LJ, Finberg RW (2000) Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 1:398–401

    Article  CAS  PubMed  Google Scholar 

  • Lee HK, Lee J, Tobias PS (2002) Two lipoproteins extracted from Escherichia coli K-12 LCD25 lipopolysaccharide are the major components responsible for Toll-like receptor 2-mediated signaling. J Immunol 168:4012–4017

    CAS  PubMed  Google Scholar 

  • Lien E, Means TK, Heine H, Yoshimura A, Kusumoto S, Fukase K, Fenton MJ, Oikawa M, Qureshi N, Monks B, Finberg RW, Ingalls RR, Golenbock DT (2000) Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J Clin Invest 105:497–504

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Botos I, Wang Y, Leonard JN, Shiloach J, Segal DM, Davies DR (2008) Structural basis of toll-like receptor 3 signaling with double-stranded RNA. Science 320:379–381

    Article  CAS  PubMed  Google Scholar 

  • Lizundia R, Sauter KS, Taylor G, Werling D (2008) Host species-specific usage of the TLR4-LPS receptor complex. Innate Immun 14:223–231

    Article  CAS  PubMed  Google Scholar 

  • Lohmann KL, Vandenplas ML, Barton MH, Bryant CE, Moore JN (2007) The equine TLR4/MD-2 complex mediates recognition of lipopolysaccharide from Rhodobacter sphaeroides as an agonist. J Endotoxin Res 13:235–242

    Article  CAS  PubMed  Google Scholar 

  • Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397

    Article  CAS  PubMed  Google Scholar 

  • Mena A, Nichani AK, Popowych Y, Ioannou XP, Godson DL, Mutwiri GK, Hecker R, Babiuk LA, Griebel P (2003) Bovine and ovine blood mononuclear leukocytes differ markedly in innate immune responses induced by Class A and Class B CpG-oligodeoxynucleotide. Oligonucleotides 13:245–259

    Article  CAS  PubMed  Google Scholar 

  • Mullarkey M, Rose JR, Bristol J, Kawata T, Kimura A, Kobayashi S, Przetak M, Chow J, Gusovsky F, Christ WJ, Rossignol DP (2003) Inhibition of endotoxin response by e5564, a novel Toll-like receptor 4-directed endotoxin antagonist. J Pharmacol Exp Ther 304:1093–1102

    Article  CAS  PubMed  Google Scholar 

  • Muroi M, Tanamoto K (2002) The polysaccharide portion plays an indispensable role in Salmonella lipopolysaccharide-induced activation of NF-kappaB through human toll-like receptor 4. Infect Immun 70:6043–6047

    Article  CAS  PubMed  Google Scholar 

  • Mutwiri G, Pontarollo R, Babiuk S, Griebel P, van Drunen Littel-van den Hurk S, Mena A, Tsang C, Alcon V, Nichani A, Loannou X, Gomis S, Townsend H, Hecker R, Potter A, Babiuk LA (2003) Biological activity of immunostimulatory CpG DNA motifs in domestic animals. Vet Immunol Immunopathol 91:89–103

    Article  CAS  PubMed  Google Scholar 

  • Nichani AK, Dar MA, Mirakhur KK, Krieg AM, Booth JS, Townsend HG, Potter AA, Babiuk LA, Mutwiri GK (2010) Subcutaneous, but not intratracheal administration of the TLR9 agonist, CpG DNA transiently reduces parainfluenza-3 virus shedding in newborn lambs. Comp Immunol Microbiol Infect Dis. doi:10.1016/j.cimid.2010.06.003

  • O'Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7:353–364

    Article  PubMed  Google Scholar 

  • O'Neill LA, Bryant CE, Doyle SL (2009) Therapeutic targeting of Toll-like receptors for infectious and inflammatory diseases and cancer. Pharmacol Rev 61:177–197

    Article  PubMed  Google Scholar 

  • Okamura Y, Watari M, Jerud ES, Young DW, Ishizaka ST, Rose J, Chow JC, Strauss JF 3rd (2001) The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem 276:10229–10233

    Article  CAS  PubMed  Google Scholar 

  • Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, Schroeder L, Aderem A (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci USA 97:13766–13771

    Article  CAS  PubMed  Google Scholar 

  • Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458:1191–1195

    Article  CAS  PubMed  Google Scholar 

  • Parkinson T (2008) The future of toll-like receptor therapeutics. Curr Opin Mol Ther 10:21–31

    CAS  PubMed  Google Scholar 

  • Pascale F, Contreras V, Bonneau M, Courbet A, Chilmonczyk S, Bevilacqua C, Epardaud M, Niborski V, Riffault S, Balazuc AM, Foulon E, Guzylack-Piriou L, Riteau B, Hope J, Bertho N, Charley B, Schwartz-Cornil I (2008) Plasmacytoid dendritic cells migrate in afferent skin lymph. J Immunol 180:5963–5972

    CAS  PubMed  Google Scholar 

  • Peterhans E, Jungi TW, Schweizer M (2003) BVDV and innate immunity. Biologicals 31:107–112

    Article  CAS  PubMed  Google Scholar 

  • Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700

    Article  CAS  PubMed  Google Scholar 

  • Robinson RA, DeVita VT, Levy HB, Baron S, Hubbard SP, Levine AS (1976) A phase I-II trial of multiple-dose polyriboinosic-polyribocytidylic acid in patieonts with leukemia or solid tumors. J Natl Cancer Inst 57:599–602

    CAS  PubMed  Google Scholar 

  • Sauter KS, Brcic M, Franchini M, Jungi TW (2007) Stable transduction of bovine TLR4 and bovine MD-2 into LPS-nonresponsive cells and soluble CD14 promote the ability to respond to LPS. Vet Immunol Immunopathol 118:92–104

    Article  CAS  PubMed  Google Scholar 

  • Schumann RR, Leong SR, Flaggs GW, Gray PW, Wright SD, Mathison JC, Tobias PS, Ulevitch RJ (1990) Structure and function of lipopolysaccharide binding protein. Science 249:1429–1431

    Article  CAS  PubMed  Google Scholar 

  • Schwarz H, Schneider K, Ohnemus A, Lavric M, Kothlow S, Bauer S, Kaspers B, Staeheli P (2007) Chicken toll-like receptor 3 recognizes its cognate ligand when ectopically expressed in human cells. J Interferon Cytokine Res 27:97–101

    Article  CAS  PubMed  Google Scholar 

  • Shoda LK, Kegerreis KA, Suarez CE, Mwangi W, Knowles DP, Brown WC (2001) Immunostimulatory CpG-modified plasmid DNA enhances IL-12, TNF-alpha, and NO production by bovine macrophages. J Leukoc Biol 70:103–112

    CAS  PubMed  Google Scholar 

  • Singh Suri S, Janardhan KS, Parbhakar O, Caldwell S, Appleyard G, Singh B (2006) Expression of toll-like receptor 4 and 2 in horse lungs. Vet Res 37:541–551

    Article  PubMed  Google Scholar 

  • Spyvee MR, Zhang H, Hawkins LD, Chow JC (2005) Toll-like receptor 2 antagonists. Part 1: preliminary SAR investigation of novel synthetic phospholipids. Bioorg Med Chem Lett 15:5494–5498

    Article  CAS  PubMed  Google Scholar 

  • Stover AG, Da Silva CJ, Evans JT, Cluff CW, Elliott MW, Jeffery EW, Johnson DA, Lacy MJ, Baldridge JR, Probst P, Ulevitch RJ, Persing DH, Hershberg RM (2004) Structure-activity relationship of synthetic toll-like receptor 4 agonists. J Biol Chem 279:4440–4449

    Article  PubMed  Google Scholar 

  • Taghavi A, Allan B, Mutwiri G, Van Kessel A, Willson P, Babiuk L, Potter A, Gomis S (2008) Protection of neonatal broiler chicks against Salmonella Typhimurium septicemia by DNA containing CpG motifs. Avian Dis 52:398–406

    Article  PubMed  Google Scholar 

  • Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11:443–451

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi O, Kawai T, Muhlradt PF, Morr M, Radolf JD, Zychlinsky A, Takeda K, Akira S (2001) Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13:933–940

    Article  CAS  PubMed  Google Scholar 

  • Thomas V, Fikrig E (2002) The Lyme disease vaccine takes its toll. Vector Borne Zoonotic Dis 2:217–222

    Article  PubMed  Google Scholar 

  • Tsuji S, Matsumoto M, Takeuchi O, Akira S, Azuma I, Hayashi A, Toyoshima K, Seya T (2000) Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guerin: involvement of toll-like receptors. Infect Immun 68:6883–6890

    Article  CAS  PubMed  Google Scholar 

  • Uematsu S, Akira S (2007) Toll-like receptors and Type I interferons. J Biol Chem 282:15319–15323

    Article  CAS  PubMed  Google Scholar 

  • Vollmer J, Weeratna R, Payette P, Jurk M, Schetter C, Laucht M, Wader T, Tluk S, Liu M, Davis HL, Krieg AM (2004) Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. Eur J Immunol 34:251–262

    Article  CAS  PubMed  Google Scholar 

  • Walsh C, Gangloff M, Monie T, Smyth T, Wei B, McKinley TJ, Maskell D, Gay N, Bryant C (2008) Elucidation of the MD-2/TLR4 interface required for signaling by lipid IVa. J Immunol 181:1245–1254

    CAS  PubMed  Google Scholar 

  • Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA (2004) Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10:1366–1373

    Article  CAS  PubMed  Google Scholar 

  • Werling D, Coffey TJ (2007) Pattern recognition receptors in companion and farm animals - the key to unlocking the door to animal disease? Vet J 174:240–251

    Article  CAS  PubMed  Google Scholar 

  • Werling D, Jann OC, Offord V, Glass EJ, Coffey TJ (2009) Variation matters: TLR structure and species-specific pathogen recognition. Trends Immunol 30:124–130

    Article  CAS  PubMed  Google Scholar 

  • Werts C, Tapping RI, Mathison JC, Chuang TH, Kravchenko V, Saint Girons I, Haake DA, Godowski PJ, Hayashi F, Ozinsky A, Underhill DM, Kirschning CJ, Wagner H, Aderem A, Tobias PS, Ulevitch RJ (2001) Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat Immunol 2:346–352

    Article  CAS  PubMed  Google Scholar 

  • Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249:1431–1433

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Lai K, Brownile R, Babiuk LA, Mutwiri GK (2008) Porcine TLR8 and TLR7 are both activated by a selective TLR7 ligand, imiquimod. Mol Immunol 45:3238–3243

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Brownlie R, Liu Q, Babiuk LA, Potter A, Mutwiri GK (2009a) Characterization of bovine Toll-like receptor 8: ligand specificity, signaling essential sites and dimerization. Mol Immunol 46:978–990

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, van Drunen Littel-van den Hurk S, Brownlie R, Babiuk LA, Potter A, Mutwiri GK (2009b) Multiple molecular regions confer intracellular localization of bovine Toll-like receptor 8. Mol Immunol 46:884–892

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Werling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coffey, T.J., Werling, D. Therapeutic targeting of the innate immune system in domestic animals. Cell Tissue Res 343, 251–261 (2011). https://doi.org/10.1007/s00441-010-1054-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-1054-9

Keywords

Navigation