Skip to main content

Advertisement

Log in

Lack of adrenomedullin affects growth and differentiation of adult neural stem/progenitor cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Adrenomedullin (AM) is a peptide hormone involved in the modulation of cellular growth, migration, apoptosis, and angiogenesis. These characteristics suggest that AM is involved in the control of neural stem/progenitor cell (NSPC) biology. To explore this hypothesis, we have obtained NSPC from the olfactory bulb of adult wild-type animals and brain conditional knockouts for adm, the gene that produces AM. Knockout NSPC contain higher levels of hyperpolymerized tubulin and more abundant filopodia than adm-containing cells, resulting in a different morphology in culture, whereas the size of the knockout neurospheres is smaller than that of the wild-types. Proliferation studies have demonstrated that adm-null NSPC incorporate less 5′-bromodeoxyuridine (BrdU) than their wild-type counterparts. In contrast, BrdU studies in the olfactory bulb of adult animals show more labeled cells in adm-null mice that in wild-types, suggesting that a compensatory mechanism exists that guarantees the sufficient production of neural cells in this organ. In NSPC differentiation tests, lack of adm results in significantly lower proportions of neurons and astrocytes and higher proportions of oligodendrocytes. The oligodendrocytes produced from adm-null neurospheres present an immature phenotype with fewer and shorter processes than adm-containing oligodendrocytes. Thus, AM is an important factor in regulating the proliferation and differentiation of adult NSPC and might be used to modulate stem cell renewal and fate in protocols destined to produce neural cells for regenerative therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abe M, Sata M, Suzuki E, Takeda R, Takahashi M, Nishimatsu H, Nagata D, Kangawa K, Matsuo H, Nagai R, Hirata Y (2006) Effects of adrenomedullin on acute ischaemia-induced collateral development and mobilization of bone-marrow-derived cells. Clin Sci 111:381–387

    Article  CAS  PubMed  Google Scholar 

  • Bernardino L, Agasse F, Silva B, Ferreira R, Grade S, Malva JO (2008) Tumor necrosis factor-alpha modulates survival, proliferation and neuronal differentiation in neonatal subventricular zone cell cultures. Stem Cells 26:2361–2371

    Article  CAS  PubMed  Google Scholar 

  • Chini EN, Choi E, Grande JP, Burnett JC, Dousa TP (1995) Adrenomedullin suppresses mitogenesis in rat mesangial cells via cAMP pathway. Biochem Biophys Res Commun 215:868–873

    Article  CAS  PubMed  Google Scholar 

  • Chute JP, Muramoto GG, Dressman HK, Wolfe G, Chao NJ, Lin S (2006) Molecular profile and partial functional analysis of novel endothelial cell-derived growth factors that regulate hematopoiesis. Stem Cells 24:1315–1327

    Article  CAS  PubMed  Google Scholar 

  • Cimini A, Ceru MP (2008) Emerging roles of peroxisome proliferator-activated receptors (PPARs) in the regulation of neural stem cells proliferation and differentiation. Stem Cell Rev 4:293–303

    Article  CAS  PubMed  Google Scholar 

  • Conti L, Cattaneo E, Papadimou E (2008) Novel neural stem cell systems. Expert Opin Biol Ther 8:153–160

    Article  CAS  PubMed  Google Scholar 

  • De Angeli S, Del Pup L, Febas E, Conconi MT, Tommasini M, Di Liddo R, Albertin G, Parnigotto PP, Nussdorfer GG (2004) Adrenomedullin and endothelin-1 stimulate in vitro expansion of cord blood hematopoietic stem cells. Int J Mol Med 14:1083–1086

    PubMed  Google Scholar 

  • Dimou L, Simon C, Kirchhoff F, Takebayashi H, Gotz M (2008) Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J Neurosci 28:10434–10442

    Article  CAS  PubMed  Google Scholar 

  • Einstein O, Ben-Hur T (2008) The changing face of neural stem cell therapy in neurologic diseases. Arch Neurol 65:452–456

    Article  PubMed  Google Scholar 

  • Fernandez AP, Serrano J, Tessarollo L, Cuttitta F, Martinez A (2008) Lack of adrenomedullin in the mouse brain results in behavioral changes, anxiety, and lower survival under stress conditions. Proc Natl Acad Sci USA 105:12581–12586

    Article  CAS  PubMed  Google Scholar 

  • Galli R, Gritti A, Bonfanti L, Vescovi AL (2003) Neural stem cells: an overview. Circ Res 92:598–608

    Article  CAS  PubMed  Google Scholar 

  • Gilyarov AV (2008) Nestin in central nervous system cells. Neurosci Behav Physiol 38:165–169

    Article  CAS  PubMed  Google Scholar 

  • Gritti A, Bonfanti L, Doetsch F, Caille I, Varez-Buylla A, Lim DA, Galli R, Verdugo JM, Herrera DG, Vescovi AL (2002) Multipotent neural stem cells reside into the rostral extension and olfactory bulb of adult rodents. J Neurosci 22:437–445

    CAS  PubMed  Google Scholar 

  • Hanabusa K, Nagaya N, Iwase T, Itoh T, Murakami S, Shimizu Y, Taki W, Miyatake K, Kangawa K (2005) Adrenomedullin enhances therapeutic potency of mesenchymal stem cells after experimental stroke in rats. Stroke 36:853–858

    Article  CAS  PubMed  Google Scholar 

  • Hattori N, Nomoto H, Fukumitsu H, Mishima S, Furukawa S (2008) AMP N1-oxide potentiates astrogenesis by cultured neural stem/progenitor cells through STAT3 activation. Biomed Res 28:295–299

    Article  Google Scholar 

  • Horie N, So K, Moriya T, Kitagawa N, Tsutsumi K, Nagata I, Shinohara K (2008) Effects of oxygen concentration on the proliferation and differentiation of mouse neural stem cells in vitro. Cell Mol Neurobiol 28:833–845

    Article  CAS  PubMed  Google Scholar 

  • Horio T, Kohno M, Kano H, Ikeda M, Yasunari K, Yokokawa K, Minami M, Takeda T (1995) Adrenomedullin as a novel antimigration factor of vascular smooth muscle cells. Circ Res 77:660–664

    CAS  PubMed  Google Scholar 

  • Hurtado-Chong A, Yusta-Boyo MJ, Vergaño-Vera E, Bulfone A, de Pablo F, Vicario-Abejón C (2009) IGF-I promotes neuronal migration and positioning in the olfactory bulb and the exit of neuroblasts from the subventricular zone. Eur J Neurosci 30:742–755

    Article  PubMed  Google Scholar 

  • Ishii M, Koike C, Igarashi A, Yamanaka K, Pan H, Higashi Y, Kawaguchi H, Sugiyama M, Kamata N, Iwata T, Matsubara T, Nakamura K, Kurihara H, Tsuji K, Kato Y (2005) Molecular markers distinguish bone marrow mesenchymal stem cells from fibroblasts. Biochem Biophys Res Commun 332:297–303

    Article  CAS  PubMed  Google Scholar 

  • Iwase T, Nagaya N, Fujii T, Itoh T, Ishibashi-Ueda H, Yamagishi M, Miyatake K, Matsumoto T, Kitamura S, Kangawa K (2005) Adrenomedullin enhances angiogenic potency of bone marrow transplantation in a rat model of hindlimb ischemia. Circulation 111:356–362

    Article  CAS  PubMed  Google Scholar 

  • Jinushi-Nakao S, Arvind R, Amikura R, Kinameri E, Liu AW, Moore AW (2007) Knot/Collier and cut control different aspects of dendrite cytoskeleton and synergize to define final arbor shape. Neuron 56:963–978

    Article  CAS  PubMed  Google Scholar 

  • Jo J, Nagaya N, Miyahara Y, Kataoka M, Harada-Shiba M, Kangawa K, Tabata Y (2007) Transplantation of genetically engineered mesenchymal stem cells improves cardiac function in rats with myocardial infarction: benefit of a novel nonviral vector, cationized dextran. Tissue Eng 13:313–322

    Article  CAS  PubMed  Google Scholar 

  • Kachar B, Behar T, Dubois-Dalcq M (1986) Cell shape and motility of oligodendrocytes cultured without neurons. Cell Tissue Res 244:27–38

    Article  CAS  PubMed  Google Scholar 

  • Kageyama R, Ohtsuka T, Kobayashi T (2008) Roles of Hes genes in neural development. Dev Growth Differ 50(Suppl 1):S97–S103

    Article  CAS  PubMed  Google Scholar 

  • Kim W, Moon SO, Sung MJ, Kim SH, Lee S, So JN, Park SK (2003) Angiogenic role of adrenomedullin through activation of Akt, mitogen-activated protein kinase, and focal adhesion kinase in endothelial cells. FASEB J 17:1937–1939

    CAS  PubMed  Google Scholar 

  • Kim TS, Misumi S, Jung CG, Masuda T, Isobe Y, Furuyama F, Nishino H, Hida H (2008) Increase in dopaminergic neurons from mouse embryonic stem cell-derived neural progenitor/stem cells is mediated by hypoxia inducible factor-1alpha. J Neurosci Res 86:2353–2362

    Article  CAS  PubMed  Google Scholar 

  • Lendahl U, Zimmerman LB, McKay RD (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60:585–595

    Article  CAS  PubMed  Google Scholar 

  • Lennington JB, Yang Z, Conover JC (2003) Neural stem cells and the regulation of adult neurogenesis. Reprod Biol Endocrinol 1:99

    Article  PubMed  Google Scholar 

  • Li Y, Zhang Y, Shibahara S, Takahashi K (2006) Adrenomedullin in adipocyte differentiation of human mesenchymal stem cells. Biochem Biophys Res Commun 350:616–622

    Article  CAS  PubMed  Google Scholar 

  • Lopez J, Martinez A (2002) Cell and molecular biology of the multifunctional peptide, adrenomedullin. Int Rev Cytol 221:1–92

    Article  CAS  PubMed  Google Scholar 

  • Martinez A, Vos M, Guedez L, Kaur G, Chen Z, Garayoa M, Pio R, Moody T, Stetler-Stevenson WG, Kleinman HK, Cuttitta F (2002) The effects of adrenomedullin overexpression in breast tumor cells. J Natl Cancer Inst 94:1226–1237

    CAS  PubMed  Google Scholar 

  • Martinez A, Zudaire E, Portal-Nunez S, Guedez L, Libutti SK, Stetler-Stevenson WG, Cuttitta F (2004) Proadrenomedullin NH2-terminal 20 peptide is a potent angiogenic factor, and its inhibition results in reduction of tumor growth. Cancer Res 64:6489–6494

    Article  CAS  PubMed  Google Scholar 

  • Mattila PK, Lappalainen P (2008) Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9:446–454

    Article  CAS  PubMed  Google Scholar 

  • McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N, Solari R, Lee MG, Foord SM (1998) RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393:333–339

    Article  CAS  PubMed  Google Scholar 

  • Miller MJ, Martinez A, Unsworth EJ, Thiele CJ, Moody TW, Elsasser T, Cuttitta F (1996) Adrenomedullin expression in human tumor cell lines. Its potential role as an autocrine growth factor. J Biol Chem 271:23345–23351

    Article  CAS  PubMed  Google Scholar 

  • Molina-Hernandez A, Velasco I (2008) Histamine induces neural stem cell proliferation and neuronal differentiation by activation of distinct histamine receptors. J Neurochem 106:706–717

    Article  CAS  PubMed  Google Scholar 

  • Moody T, Miller MJ, Martinez A, Unsworth EJ, Cuttitta F (1997) Adrenomedullin binds with high affinity, elevates cyclic AMP, and stimulates c-fos mRNA in C6 glioma cells. Peptides 18:1111–1115

    Article  CAS  PubMed  Google Scholar 

  • Nagaya N, Kangawa K, Kanda M, Uematsu M, Horio T, Fukuyama N, Hino J, Harada-Shiba M, Okumura H, Tabata Y, Mochizuki N, Chiba Y, Nishioka K, Miyatake K, Asahara T, Hara H, Mori H (2003) Hybrid cell-gene therapy for pulmonary hypertension based on phagocytosing action of endothelial progenitor cells. Circulation 108:889–895

    Article  CAS  PubMed  Google Scholar 

  • Namihira M, Kohyama J, Abematsu M, Nakashima K (2008) Epigenetic mechanisms regulating fate specification of neural stem cells. Philos Trans R Soc Lond Biol 363:2099–2109

    Article  CAS  PubMed  Google Scholar 

  • Nikitenko LL, MacKenzie IZ, Rees MC, Bicknell R (2000) Adrenomedullin is an autocrine regulator of endothelial growth in human endometrium. Mol Hum Reprod 6:811–819

    Article  CAS  PubMed  Google Scholar 

  • Okada M, Murase K, Makino A, Nakajima M, Kaku T, Furukawa S, Furukawa Y (2008) Effects of estrogens on proliferation and differentiation of neural stem/progenitor cells. Biomed Res 29:163–170

    Article  CAS  PubMed  Google Scholar 

  • Otaegi G, Yusta-Boyo MJ, Vergaño-Vera E, Mendez-Gomez HR, Carrera AC, Abad JL, Gonzalez M, Rosa EJ de la, Vicario-Abejón C, Pablo F de (2006) Modulation of the PI 3-kinase-Akt signalling pathway by IGF-I and PTEN regulates the differentiation of neural stem/precursor cells. J Cell Sci 119:2739–2748

    Article  CAS  PubMed  Google Scholar 

  • Prozorovski T, Schulze-Topphoff U, Glumm R, Baumgart J, Schroter F, Ninnemann O, Siegert E, Bendix I, Brustle O, Nitsch R, Zipp F, Aktas O (2008) Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol 10:385–394

    Article  CAS  PubMed  Google Scholar 

  • Rumsby M, Afsari F, Stark M, Hughson E (2003) Microfilament and microtubule organization and dynamics in process extension by central glia-4 oligodendrocytes: evidence for a microtubule organizing center. Glia 42:118–129

    Article  PubMed  Google Scholar 

  • Sackett DL, Ozbun L, Zudaire E, Wessner L, Chirgwin JM, Cuttitta F, Martinez A (2008) Intracellular proadrenomedullin-derived peptides decorate the microtubules and contribute to cytoskeleton function. Endocrinology 149:2888–2898

    Article  CAS  PubMed  Google Scholar 

  • Sakurai K, Osumi N (2008) The neurogenesis-controlling factor, Pax6, inhibits proliferation and promotes maturation in murine astrocytes. J Neurosci 28:4604–4612

    Article  CAS  PubMed  Google Scholar 

  • Schneider JW, Gao Z, Li S, Farooqi M, Tang TS, Bezprozvanny I, Frantz DE, Hsieh J (2008) Small-molecule activation of neuronal cell fate. Nat Chem Biol 4:408–410

    Article  CAS  PubMed  Google Scholar 

  • Schober JM, Komarova YA, Chaga OY, Akhmanova A, Borisy GG (2007) Microtubule-targeting-dependent reorganization of filopodia. J Cell Sci 120:1235–1244

    Article  CAS  PubMed  Google Scholar 

  • Sharlin DS, Tighe D, Gilbert ME, Zoeller RT (2008) The balance between oligodendrocyte and astrocyte production in major white matter tracts is linearly related to serum total thyroxine. Endocrinology 149:2527–2536

    Article  CAS  PubMed  Google Scholar 

  • Tsuruda T, Kato J, Kitamura K, Kuwasako K, Imamura T, Koiwaya Y, Tsuji T, Kangawa K, Eto T (1998) Adrenomedullin: a possible autocrine or paracrine inhibitor of hypertrophy of cardiomyocytes. Hypertension 31:505–510

    CAS  PubMed  Google Scholar 

  • Vergaño-Vera E, Mendez-Gomez HR, Hurtado-Chong A, Cigudosa JC, Vicario-Abejón C (2009) Fibroblast growth factor-2 increases the expression of neurogenic genes and promotes the migration and differentiation of neurons derived from transplanted neural stem/progenitor cells. Neuroscience 162:39–54

    Article  PubMed  CAS  Google Scholar 

  • Vicario-Abejón C, Yusta-Boyo MJ, Fernández-Moreno C, de Pablo F (2003) Locally born olfactory bulb stem cells proliferate in response to insulin-related factors and require endogenous insulin-like growth factor-I for differentiation into neurons and glia. J Neurosci 23:895–906

    PubMed  Google Scholar 

  • Wang B, Xiao Z, Chen B, Han J, Gao Y, Zhang J, Zhao W, Wang X, Dai J (2008) Nogo-66 promotes the differentiation of neural progenitors into astroglial lineage cells through mTOR-STAT3 pathway. PLoS ONE 3:e1856

    Article  PubMed  CAS  Google Scholar 

  • Withers DJ, Coppock HA, Seufferlein T, Smith DM, Bloom SR, Rozengurt E (1996) Adrenomedullin stimulates DNA synthesis and cell proliferation via elevation of cAMP in Swiss 3T3 cells. FEBS Lett 378:83–87

    Article  CAS  PubMed  Google Scholar 

  • Wolswijk G (1998) Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J Neurosci 18:601–609

    CAS  PubMed  Google Scholar 

  • Yurugi-Kobayashi T, Itoh H, Schroeder T, Nakano A, Narazaki G, Kita F, Yanagi K, Hiraoka-Kanie M, Inoue E, Ara T, Nagasawa T, Just U, Nakao K, Nishikawa S, Yamashita JK (2006) Adrenomedullin/cyclic AMP pathway induces Notch activation and differentiation of arterial endothelial cells from vascular progenitors. Arterioscler Thromb Vasc Biol 26:1977–1984

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660

    Article  CAS  PubMed  Google Scholar 

  • Zudaire E, Martinez A, Cuttitta F (2003) Adrenomedullin and cancer. Regul Pept 112:175–183

    Article  CAS  PubMed  Google Scholar 

  • Zudaire E, Martinez A, Garayoa M, Pio R, Kaur G, Woolhiser MR, Metcalfe DD, Hook WA, Siraganian RP, Guise TA, Chirgwin JM, Cuttitta F (2006) Adrenomedullin is a cross-talk molecule that regulates tumor and mast cell function during human carcinogenesis. Am J Pathol 168:280–291

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. M. Berrocal, Ms. B. Lázaro, and Ms. R. Varillas for excellent technical assistance and to Ms. V. Nieto-Estévez for help with cell cycle analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Martínez.

Additional information

Carlos Vicario-Abejón and Alfredo Martínez contributed equally to this study.

This work was supported by grants from the Spanish Ministry of Science and Innovation (SAF2007-60010, BFU2007-61230, SAF2009-13240) and from the Instituto de Salud Carlos III (RETICS, RD06/0026/1001 and CIBERNED, CB06/05/0065).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vergaño-Vera, E., Fernández, A.P., Hurtado-Chong, A. et al. Lack of adrenomedullin affects growth and differentiation of adult neural stem/progenitor cells. Cell Tissue Res 340, 1–11 (2010). https://doi.org/10.1007/s00441-010-0934-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-0934-3

Keywords

Navigation