Skip to main content
Log in

Cellular phenotypes of human model neurons (NT2) after differentiation in aggregate culture

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The well-characterized human teratocarcinoma line Ntera2 (NT2) can be differentiated into mature neurons. We have significantly shortened the time-consuming process for generating postmitotic neurons to approximately 4 weeks by introducing a differentiation protocol for free-floating cell aggregates and a subsequent purification step. Here, we characterize the neurochemical phenotypes of the neurons derived from this cell aggregate method. During differentiation, the NT2 cells lose immunoreactivity for vimentin and nestin filaments, which are characteristic for the immature state of neuronal precursors. Instead, they acquire typical neuronal markers such as β-tubulin type III, microtubule-associated protein 2, and phosphorylated tau, but no astrocyte markers such as glial fibrillary acidic protein. They grow neural processes that express punctate immunoreactivity for synapsin and synaptotagmin suggesting the formation of presynaptic structures. Despite their common clonal origin, neurons cultured for 2–4 weeks in vitro comprise a heterogeneous population expressing several neurotransmitter phenotypes. Approximately 40% of the neurons display glutamatergic markers. A minority of neurons is immunoreactive for serotonin, gamma-amino-butyric acid, and its synthesizing enzyme glutamic acid decarboxylase. We have found no evidence for a dopaminergic phenotype. Subgroups of NT2 neurons respond to the application of nitric oxide donors with the synthesis of cGMP. A major subset shows immunoreactivity to the cholinergic markers choline acetyl-transferase, vesicular acetylcholine transporter, and the non-phosphorylated form of neurofilament H, all indicative of motor neurons. The NT2 system may thus be well suited for research related to motor neuron diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

BrdU:

5-bromo-2’-deoxyuridine

ChAT:

choline acetyl-transferase

cGMP:

cyclic guanosine-monophosphate

DAPI:

4',6-diamidino-2'-phenylindol-dihydrochloride

GABA:

gamma-amino butyric acid

GAD:

glutamate decarboxylase

GFAP:

glial fibrillary acidic protein

MAP-2:

microtubule-associated protein 2

NF-H:

neurofilament H

NO:

nitric oxide

RA:

retinoic acid

sGC:

soluble guanylyl-cyclase

TH:

tyrosine hydroxylase

VAChT:

vesicular acetylcholine transporter

VG1uT1:

vesicular glutamate transporter 1

References

  • Alenina N, Bashammakh S, Bader M (2006) Specification and differentiation of serotonergic neurons. Stem Cell Rev 2:5–10

    Article  PubMed  CAS  Google Scholar 

  • Andrews PW (1984) Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro. Dev Biol 103:285–293

    Article  PubMed  CAS  Google Scholar 

  • Avossa D, Rosato-Siri MD, Mazzarol F, Ballerini L (2003) Spinal circuits formation: a study of developmentally regulated markers in organotypic cultures of embryonic mouse spinal cord. Neuroscience 122:391–405

    Article  PubMed  CAS  Google Scholar 

  • Bicker G (2005) STOP and GO with NO: nitric oxide as a regulator of cell motility in simple brains. Bioessays 27:495–505

    Article  PubMed  CAS  Google Scholar 

  • Biskup S, Moore DJ (2006) Detrimental deletions: mitochondria, aging and Parkinson’s disease. Bioessays 28:963–967

    Article  PubMed  CAS  Google Scholar 

  • Boehning D, Snyder SH (2003) Novel neural modulators. Annu Rev Neurosci 26:105–131

    Article  PubMed  CAS  Google Scholar 

  • Boillee S, Vande Velde C, Cleveland DW (2006) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52:39–59

    Article  PubMed  CAS  Google Scholar 

  • Boulton CL, Southam E, Garthwaite J (1995) Nitric oxide-dependent long-term potentiation is blocked by a specific inhibitor of soluble guanylyl cyclase. Neuroscience 69:699–703

    Article  PubMed  CAS  Google Scholar 

  • Brahmachari S, Fung YK, Pahan K (2006) Induction of glial fibrillary acidic protein expression in astrocytes by nitric oxide. J Neurosci 26:4930–4939

    Article  PubMed  CAS  Google Scholar 

  • Briscoe J (2006) Agonizing hedgehog. Nat Chem Biol 2:10–11

    Article  PubMed  CAS  Google Scholar 

  • Campbell MJ, Morrison JH (1989) Monoclonal antibody to neurofilament protein (SMI-32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex. J Comp Neurol 282:191–205

    Article  PubMed  CAS  Google Scholar 

  • Chu MS, Chang CF, Yang CC, Ho LL, Hung SC (2006) Signalling pathway in the induction of neurite outgrowth in human mesenchymal stem cells. Cell Signal 18:519–530

    Article  PubMed  CAS  Google Scholar 

  • Correia AS, Anisimov SV, Li JY, Brundin P (2005) Stem cell-based therapy for Parkinson’s disease. Ann Med 37:487–498

    Article  PubMed  CAS  Google Scholar 

  • Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391–397

    Article  PubMed  CAS  Google Scholar 

  • Dragunov M (2008) The adult human brain in preclinical drug development. Nat Rev Drug Discov 7:659–666

    Article  CAS  Google Scholar 

  • Friebe A, Koesling D (1998) Mechanism of YC-1-induced activation of soluble guanylyl cyclase. Mol Pharmacol 53:123–127

    PubMed  CAS  Google Scholar 

  • Garbuzova-Davis S, Willing AE, Milliken M, Saporta S, Zigova T, Cahill DW, Sanberg PR (2002) Positive effect of transplantation of hNT neurons (NTera 2/D1 cell-line) in a model of familial amyotrophic lateral sclerosis. Exp Neurol 174:169–180

    Article  PubMed  Google Scholar 

  • Garthwaite J (2008) Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci 27:2783–2802

    Article  PubMed  Google Scholar 

  • Glaser T, Brüstle O (2005) Retinoic acid induction of ES-cell-derived neurons: the radial glia connection. Trends Neurosci 28:397–400

    Article  PubMed  CAS  Google Scholar 

  • Goldman SA, Windrem MS (2006) Cell replacement therapy in neurological disease. Philos Trans R Soc Lond Biol 361:1463–1475

    Article  PubMed  Google Scholar 

  • Guillemain I, Alonso G Patey G, Privat A, Chaudieu I (2000) Human NT2 neurons express a large variety of neurotransmission phenotypes in vitro. J Comp Neurol 422:380–395

    Article  PubMed  CAS  Google Scholar 

  • Hartley RS, Margulis M, Fishman PS, Lee VM, Tang CM (1999) Functional synapses are formed between human NTera2 (NT2N, hNT) neurons grown on astrocytes. J Comp Neurol 407:1–10

    Article  PubMed  CAS  Google Scholar 

  • Hill EJ, Woehrling M, Prince M, Coleman MD (2008) Differentiating human NT2/D1 neurospheres as a versatile in vitro 3D model system for developmental neurotoxicity testing. Toxicology 249:243–250

    Article  PubMed  CAS  Google Scholar 

  • Hirsch EC (2007) Animal models in neurodegenerative diseases. J Neural Transm Suppl 2007:87–90

    Article  Google Scholar 

  • Hoyte L, Barber PA, Buchan AM, Hill MD (2004) The rise and fall of NMDA antagonists for ischemic stroke. Curr Mol Med 4:131–136

    Article  PubMed  CAS  Google Scholar 

  • Iacovitti L, Stull ND, Jin H (2001) Differentiation of human dopamine neurons from an embryonic carcinomal stem cell line. Brain Res 912:99–104

    Article  PubMed  CAS  Google Scholar 

  • Keynes RG, Garthwaite J (2004) Nitric oxide and its role in ischaemic brain injury. Curr Mol Med 4:179–191

    Article  PubMed  CAS  Google Scholar 

  • Lassmann H (2008) Models of multiple sclerosis: new insights into pathophysiology and repair. Curr Opin Neurol 21:242–247

    Article  PubMed  CAS  Google Scholar 

  • Li X, Du Z, Zarnowska ED, Pankratz M, Hansen LO, Pearce RA, Zhang S (2005) Specification of motoneurons from human embryonic stem cells. Nat Biotechnol 23:215–221

    Article  PubMed  CAS  Google Scholar 

  • Maden M (2002) Retinoid signalling in the development of the central nervous system. Nat Rev Neurosci 3:843–853

    Article  PubMed  CAS  Google Scholar 

  • Munir M, Lu L, McGonigle P (1995) Excititoxic cell death and delayed rescue in human neurons derived from NT2 cells. J Neurosci 15:7847–7860

    PubMed  CAS  Google Scholar 

  • Murphy S (2000) Production of nitric oxide by glial cells: regulation and potential roles in the CNS. Glia 29:1–13

    Article  PubMed  CAS  Google Scholar 

  • Nelson PT, Kondziolka D, Wechsler L, Goldstein S, Gebel J, DeCesare S, Elder EM, Zhang PJ, Jacobs A, McGrogan M, Lee VM, Trojanowski JQ (2002) Clonal human (hNT) neuron grafts for stroke therapy: neuropathology in a patient 27 months after implantation. Am J Pathol 160:1201–1206

    PubMed  Google Scholar 

  • Novitch BG, Wichterle H, Jessell TM, Sockanathan S (2003) A requirement for retinoic acid-mediated transcriptional activation in ventral neural patterning and motor neuron specification. Neuron 40:81–95

    Article  PubMed  CAS  Google Scholar 

  • Ozdener H (2007) Inducible functional expression of Bcl-2 in human astrocytes derived from NTera-2 cells. J Neurosci Methods 159:8–18

    Article  PubMed  CAS  Google Scholar 

  • Paquet-Durand F, Bicker G (2004) Hypoxic/ischaemic cell damage in cultured human NT-2 neurons. Brain Res 1011:33–47

    Article  PubMed  CAS  Google Scholar 

  • Paquet-Durand F, Bicker G (2007) Human model neurons in studies of brain cell damage and neural repair. Curr Mol Med 7:541–554

    Article  PubMed  CAS  Google Scholar 

  • Paquet-Durand F, Tan S, Bicker G (2003) Turning teratocarcinoma cells into neurons: rapid differentiation of NT-2 cells in floating spheres. Brain Res Dev Brain Res 142:161–167

    Article  PubMed  CAS  Google Scholar 

  • Paquet-Durand F, Gierse A, Bicker G (2006) Diltiazem protects human NT-2 neurons against excitotoxic damage in a model of simulated ischemia. Brain Res 1124:45–54

    Article  PubMed  CAS  Google Scholar 

  • Pardo B, Honegger P (2000) Differentiation of rat striatal embryonic stem cells in vitro: monolayer culture vs. three-dimensional coculture with differentiated brain cells. J Neurosci Res 15:504–512

    Article  Google Scholar 

  • Pleasure SJ, Page CP, Lee VM (1992) Pure, postmitotic, polarized human neurons derived from NTera 2 cells provide a system for expressing exogenous proteins in terminally differentiated neurons. J Neurosci 12:1802–1815

    PubMed  CAS  Google Scholar 

  • Radio NM, Mundy WR (2008) Developmental neurotoxicity testing in vitro: models for assessing chemical effects on neurite outgrowth. Neurotoxicology 29:361–376

    Article  PubMed  CAS  Google Scholar 

  • Roberson ED, Mucke L (2006) 100 years and counting: prospects for defeating Alzheimer’s disease. Science 314:781–784

    Article  PubMed  CAS  Google Scholar 

  • Sandhu JK, Sikorska M, Walker PR (2002) Characterization of astrocytes derived from human NTera-2/D1 embryonal carcinoma cells. J Neurosci Res 68:604–614

    Article  PubMed  CAS  Google Scholar 

  • Sandhu JK, Pandey S, Ribecco-Lutkiewicz M, Monette R, Borowy-Borowski H, Walker PR, Sikorska M (2003) Molecular mechanisms of glutamate neurotoxicity in mixed cultures of NT2-derived neurons and astrocytes: protective effects of coenzyme Q10. J Neurosci Res 72:691–703

    Article  PubMed  CAS  Google Scholar 

  • Saporta S, Makoui AS, Willing AE, Daadi M, Cahill DW, Sanberg PR (2002) Functional recovery after complete contusion injury to the spinal cord and transplantation of human neuroteratocarcinoma neurons in rats. J Neurosurg 97 (1 Suppl):63–68

    PubMed  Google Scholar 

  • Tegenge MA, Bicker G (2008) Nitric oxide signal transduction facilitates the migration of human neuronal precursor (NT2) cells. FENS Abstr 4:180.37

    Google Scholar 

  • Tsang YM, Chiong F, Kuznetsov D, Kasarskis E, Geula C (2000) Motor neurons are rich in non-phosphorylated neurofilaments: cross-species comparison and alterations in ALS. Brain Res 861:45–58

    Article  PubMed  CAS  Google Scholar 

  • Wichterle H, Lieberam I, Porter JA, Jessell TM (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110:385–397

    Article  PubMed  CAS  Google Scholar 

  • Zigova T, Willing AE, Tedesco EM, Borlongan CV, Saporta S, Snable GL, Sanberg PR (1999) Lithium chloride induces the expression of tyrosine hydroxylase in hNT neurons. Exp Neurol 157:251–258

    Article  PubMed  CAS  Google Scholar 

  • Zigova T, Barroso LF, Willing AE, Saporta S, McGrogan MP, Freeman TB, Sanberg PR (2000) Dopaminergic phenotype of hNT cells in vitro. Brain Res Dev Brain Res 122:87–90

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Jan de Vente, Maastricht University for the gift of the cGMP antiserum, to O. P. Ottersen, Department of Anatomy, University of Oslo for the gift of the glutamate antiserum, to Alexandra Kotsiari, Daniela Ragancokova, and Martin Stangel, Hannover Medical School for the gift of primary rat astrocytes, to the Department of Physiology, University of Veterinary Medicine, Hannover for the gift of mouse CNS tissue, and to Sabine Knipp for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Stern.

Additional information

G. Podrygajlo is a Marie Curie Actions Fellow and M.A. Tegenge received a Georg Christoph Lichtenberg Fellowship from the Federal State of Lower Saxony. M. Stern and G. Bicker were supported by the Federal Ministry for Education and Research (BMBF). F. Paquet-Durand was supported by grants from the Kerstan Foundation, Tübingen, Germany and the German Research Council (DFG; PA 1751/1-1).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podrygajlo, G., Tegenge, M.A., Gierse, A. et al. Cellular phenotypes of human model neurons (NT2) after differentiation in aggregate culture. Cell Tissue Res 336, 439–452 (2009). https://doi.org/10.1007/s00441-009-0783-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-009-0783-0

Keywords

Navigation