Skip to main content
Log in

Acetylcholine inhibits nitric oxide (NO) synthesis in the gastropod nervous system

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Acetylcholine (ACh) is one of the main signals regulating nitric oxide synthase (NOS) expression and nitric oxide (NO) biosynthesis in mammals. However, few comparative studies have been performed on the role of ACh on NOS activity in non-mammalian animals. We have therefore studied the cholinergic control of NOS in the snail Helix pomatia and compared the effects of ACh on NO synthesis in the enteric nervous system of the snail and rat. Analyses by the NADPH-diaphorase reaction, immunocytochemistry, purification with ion-exchange chromatography, Western-blot, and quantitative polymerase chain reaction have revealed the expression of neuronal NOS in the rat intestine and of a 60-kDa subunit of NOS in the enteric nerve plexus of H. pomatia. In H. pomatia, quantification of the NO-derived nitrite ions has established that NO formation is confined to the NOS-containing midintestine. Nitrite production can be elevated by L-arginine but inhibited by Nω-nitro-L-arginine. In rats, ACh moderately elevates nitrite production, whereas ACh, the nicotinic receptor agonists (nicotine, acetyl thiocholine iodide, metacholine) and the cholinesterase inhibitor eserine reduce enteric nitrite formation in snails. The nicotinic receptor antagonist tubocurarine also provokes nitrite liberation, whereas the muscarinic receptor agonists or antagonists have no significant effect in snails. In the presence of EDTA or tetrodotoxin, ACh fails to inhibit nitrite production. In pharmacological studies, we have found that ACh contracts the midintestinal muscles and, in snails, simultaneously reduces the antagonistic muscle relaxant effect of L-arginine. Our experiments provide the first evidence for an inhibitory regulation of neuronal NO synthesis by ACh in an invertebrate species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams CE, Freedman R (1997) Nicotinic antagonist alpha-bungarotoxin binding to rat hippocampal neurons containing nitric oxide synthase. Brain Res 776:111–116

    Article  PubMed  CAS  Google Scholar 

  • Adams CE, Stevens KE, Kem WR, Freedman R (2000) Inhibition of nitric oxide synthase prevents alpha7 nicotinic receptor-mediated restoration of inhibitory auditory gating in rat hippocampus. Brain Res 877:235–244

    Article  PubMed  CAS  Google Scholar 

  • Ayajiki K, Okamura T, Toda N (1994) Neurogenic relaxation by nicotine in isolated cat middle cerebral arteries. J Pharmacol Exp Ther 270:795–801

    PubMed  CAS  Google Scholar 

  • Azanza MJ, Pérez-Castejón C, Pes N, Pérez-Bruzón RN, Aisa J, Junquera C, Maestú C, Lahoz M, Martínez-Ciriano C, Vera-Gil A, Del Moral A (2008) Characterization by immunocytochemistry of ionic channels in Helix aspersa suboesophageal brain ganglia neurons. Histol Histopathol 23:397–406

    PubMed  CAS  Google Scholar 

  • Barthó L, Lefebvre RA (1994a) Nitric oxide induces acetylcholine-mediated contractions in the guinea-pig small intestine. Naunyn Schmiedebergs Arch Pharmacol 350:582–584

    Article  PubMed  Google Scholar 

  • Barthó L, Lefebvre RA (1994b) Nitric oxide causes contraction in the rat isolated small intestine. Eur J Pharmacol 259:101–104

    Article  PubMed  Google Scholar 

  • Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide and peroxynitrite: the good, the bad, and the ugly. Am J Physiol 271:1424–1437

    Google Scholar 

  • Briggs CA (1992) Potentiation of nicotinic transmission in the rat superior cervical sympathetic ganglion: effects of cyclic GMP and nitric oxide generators. Brain Res 573:139–146

    Article  PubMed  CAS  Google Scholar 

  • Calignano A, Whittle BJR, Di Rosa M, Moncada S (1992) Involvement of endogenous nitric oxide in the regulation of rat intestinal motility in vivo. Eur J Pharmacol 229:273–276

    Article  PubMed  CAS  Google Scholar 

  • Cooke IRC, Edwards SL, Anderson CR (1994) The distribution of NADPH diaphorase activity and immunoreactivity to nitric oxide synthase in the nervous system of the pulmonate mollusc Helix aspersa. Cell Tissue Res 277:565–572

    Article  CAS  Google Scholar 

  • Csillik B, Nemcsok J, Boncz I, Knyihar-Csillik E (1998) Nitric oxide synthase and the acetylcholine receptor in the prefrontal cortex: metasynaptic organization of the brain. Neurobiology (Budapest, Hungary) 6:383–404

    CAS  Google Scholar 

  • Dingledine R, Kelly JS (1978) Cholinergic processes at synaptic junctions. In: Feldman J, Gilula NB, Pitts JD (eds) Intercellular junctions and synapses. Chapman and Hall, London, pp 145–146

    Google Scholar 

  • Ebert JG, Zelenka M, Gath I, Godtel-Armbrust U, Forstermann U (2003) Colocalization but differential regulation of neuronal NO synthase and nicotinic acetylcholine receptor in C2C12 myotubes. Am J Physiol Cell Physiol 284:C1065–C1072

    PubMed  CAS  Google Scholar 

  • El-Dada MD, Quik M (1997) Involvement of nitric oxide in nicotinic receptor-mediated myopathy. J Pharmacol Exp Ther 281:1463–1470

    PubMed  CAS  Google Scholar 

  • Elhusseiny A, Hamel E (2000) Muscarinic—but not nicotinic—acetylcholine receptors mediate a nitric oxide-dependent dilation in brain cortical arterioles: a possible role for the M5 receptor subtype. J Cereb Blood Flow Metab 20:298–305

    Article  PubMed  CAS  Google Scholar 

  • Gardino PF, Schmal AR, Calaza Kda C (2004) Identification of neurons with acetylcholinesterase and NADPH-diaphorase activities in the centrifugal visual system of the chick. J Chem Neuroanat 27:267–273

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite J (2008) Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci 27:2783–2802

    Article  PubMed  Google Scholar 

  • Gerber SH, Haunstetter A, Kruger C, Kaufmann R, Nobiling R, Haass M (1995) Role of [Na+]i and [Ca2+]i in nicotine-induced norepinephrine release from bovine adrenal chromaffin cells. Am J Physiol Cell Physiol 269:C572–C581

    CAS  Google Scholar 

  • Haberberger RV, Henrich M, Lips KS, Kummer W (2003) Nicotinic receptor alpha7-subunits are coupled to the stimulation of nitric oxide synthase in rat dorsal root ganglion neurons. Histochem Cell Biol 120:173–181

    Article  PubMed  CAS  Google Scholar 

  • Hebeiß K, Kilbinger H (1996) Differential effects of nitric oxide donors on basal and electrically evoked release of acetylcholine from guinea-pig myenteric neurones. Br J Pharmacol 118:2073–2078

    PubMed  Google Scholar 

  • Hernádi L, Erdélyi L, Hiripi L, Elekes K (1998) The organization of serotonin-, dopamine-, and FMRFamide-containing neuronal elements and their possible role in the regulation of spontaneous contraction of the gastrointestinal tract in the snail Helix pomatia. J Neurocytol 27:761–775

    Article  PubMed  Google Scholar 

  • Huang S, Kerschbaum NH, Engel E, Hermann A (1997) Biochemical characteriztion and histochemicl localization of nitric oxide synthase in the nervous system of the snail Helix pomatia. J Neurochem 69:2516–2528

    Article  PubMed  CAS  Google Scholar 

  • Kaneko S, Maeda T, Kume T, Kochiyama H, Akaike A, Shimohama S, Kimura J (1997) Nicotine protects cultured cortical neurons against glutamate-induced cytotoxicity via alpha7-neuronal receptors and neuronal CNS receptors. Brain Res 765:135–140

    Article  PubMed  CAS  Google Scholar 

  • Kawashima K, Fujii T (2003) The lymphocytic cholinergic system and its biological function. Life Sci 72:2101–2109

    Article  PubMed  CAS  Google Scholar 

  • Kerkut GA, Walker RJ (1975) Pharmacological studies on the pulmonate nervous system. In: Fretter V, Peake J (eds) Pulmonates, vol 1. Academic Press, London New York San Francisco, pp 192–195

    Google Scholar 

  • Korneev SA, Picot J, Phillips R, Korneeva E, O’Shea M (1998) Molecular characterization of NOS in a mollusc; expression in a giant modulatory neuron. J Neurobiol 35:65–76

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre RA, Barthó L (1997) Mechanism of nitric-oxide induced contraction in the rat isolated small intestine. Br J Pharmacol 120:975–981

    Article  PubMed  CAS  Google Scholar 

  • Marzinzig M, Nussler AK, Stadler J, Marzinzig E, Barthlen W, Nussler NC, Beger HG, Morris SM Jr, Bruckner UB (1997) Improved methods to measure end products of nitric oxide in biological fluids: nitrite, nitrate, S-nitrosothiols. Nitric Oxide 1:177–189

    Article  PubMed  CAS  Google Scholar 

  • Mayer B, Andrew P (1998) Nitric oxide synthase: catalytic function and progress towards selective inhibition. Nauny-Schmiedeberg’s Arch Pharmacol 358:127–133

    Article  CAS  Google Scholar 

  • Moroz LL, Dahlgren RL, Boudko D, Sweedler JV, Lovell P (2005) Direct single cell determination of nitric oxide synthase related metabolites in identified nitrergic neurons. J Inorg Biochem 99:929–939

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Takahashi T, Taniuchi M, Hsu CX, Owyang C (1998) Nicotinic receptor mediates nitric oxide synthase expression in the rat gastric myenteric plexus. J Clin Invest 101:1479–1489

    Article  PubMed  CAS  Google Scholar 

  • Necker R (2004) Distribution of choline acetyltransferase and NADPH diaphorase in the spinal cord of the pigeon. Anat Embryol (Berl) 208:169–181

    CAS  Google Scholar 

  • Nilson GE, Söderström V (1997) Comparative aspects on nitric oxide in brain and its role as a cerebral vasodilator. Comp Biochem Physiol [A] Physiol 118:949–958

    Article  Google Scholar 

  • Ribera J, Marsal J, Casanovas A, Hukkanen M, Tarabal O, Esquerda JE (1998) Nitric oxide synthase in rat neuromuscular junctions and in nerve terminals of Torpedo electric organ: its role as regulator of acetylcholine release. J Neurosci Res 51:90–102

    Article  PubMed  CAS  Google Scholar 

  • Rőszer T, Serfőző Z, Elekes K (2001) Neurochemical characterisation of the enteric nervous system in some freshwater and terrestrial snails: nitrergic and peptidergic networks. Acta Biol D 23:71–73

    Google Scholar 

  • Rőszer T, Jenei ZS, Serfőző Z, Czimmerer ZS, Bánfalvi G (2004a) Structural diversity of NADPH diaphorase reactive enteral networks in Stylommatophora. Invert Biol 123:128–135

    Google Scholar 

  • Rőszer T, Czimmerer ZS, Szentmiklósi AJ, Bánfalvi G (2004b) Nitric oxide synthesis is blocked during dormant periods of the snail Helix lucorum L. Cell Tissue Res 316:255–262

    Article  PubMed  CAS  Google Scholar 

  • Rőszer T, Kiss-Tóth É, Szentmiklósi AJ, Bánfalvi G (2006) The neuropeptide FMRFamide may serve as a substrate source for NO synthase. Cell Tissue Res 325:567–575

    Article  PubMed  CAS  Google Scholar 

  • Serfőző Z, Szentmiklósi AJ, Elekes K (2008) Characterization of nitric oxidergic neurons in the alimentary tract of the snail Helix pomatia L.: histochemical and physiological study. J Comp Neurol 506:801–821

    Article  PubMed  CAS  Google Scholar 

  • Shimohama S, Akaike A, Kimura J (1996) Nicotine-induced protection against glutamate cytotoxicity. Nicotinic cholinergic receptor-mediated inhibition of nitric oxide formation. Ann N Y Acad Sci 777:356–361

    Article  PubMed  CAS  Google Scholar 

  • Si ML, Lee TJ (2002) Alpha7-nicotinic acetylcholine receptors on cerebral perivascular sympathetic nerves mediate choline-induced nitrergic neurogenic vasodilation. Circ Res 12:62–69

    Article  CAS  Google Scholar 

  • Smeets WJ, Alonso JR, González A (1997) Distribution of NADPH-diaphorase and nitric oxide synthase in relation to catecholaminergic neuronal structures in the brain of the lizard Gekko gecko. J Comp Neurol 377:121–141

    Article  PubMed  CAS  Google Scholar 

  • Solntseva EI, Bukanova JV, Marchenko E, Skrebitsky VG (2006) Donepezil is a strong antagonist of voltage-gated calcium and potassium channels in molluscan neurons. Comp Biochem Physiol [C] Toxicol Pharmacol 144:319–326

    Article  CAS  Google Scholar 

  • Tauc L (1966) Physiology of the nervous system. In: Wilbur KM, Yonge CM (eds) Physiology of Mollusca. Academic Press, New York London, pp 412–417

    Google Scholar 

  • Teaktong T, Graham A, Court J, Perry R, Jaros E, Johnson M, Hall R, Perry E (2003) Alzheimer’s disease is associated with a selective increase in alpha7 nicotinic acetylcholine receptor immunoreactivity in astrocytes. Glia 41:207–211

    Article  PubMed  Google Scholar 

  • Torreilles J (2001) Nitric oxide: one of the more conserved and widespread signaling molecules. Front Biosci 6:D1161–D1172

    Article  PubMed  CAS  Google Scholar 

  • Villani L, Guarnieri T, Zironi I (1994) Choline acetyltransferase and NADPH-diaphorase localization in the goldfish habenulo-interpeduncular system. Neurosci Lett 173:67–70

    Article  PubMed  CAS  Google Scholar 

  • Zayas RM, Quazi S, Morton DB, Trimmer BA (2002) Nicotinic acetylcholine receptors are functionally coupled to the nitric oxide/cGMP-pathway in insect neurons. J Neurochem 83:421–431

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The kind help of Dr. Attila Szanto with the RT-QPCR analyses and the technical assistance of Ms. Krisztina Dobák and Ms. Ildikó Juhász is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Rőszer.

Additional information

This article is dedicated to Dr. Gábor Hollósi on the 50th anniversary of his graduation and being a teacher at the University of Debrecen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rőszer, T., Józsa, T., Szentmiklósi, A.J. et al. Acetylcholine inhibits nitric oxide (NO) synthesis in the gastropod nervous system. Cell Tissue Res 336, 325–335 (2009). https://doi.org/10.1007/s00441-009-0764-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-009-0764-3

Keywords

Navigation