Skip to main content
Log in

The rocker bone: a new kind of mineralised tissue?

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In some Ophidiiform fishes, the anterior part of the swimbladder is thickened into a hard structure called the “rocker bone”, which is thought to play a role in sound production. Although this structure has been described as cartilage or bone, its nature is still unknown. We have made a thorough analysis of the rocker bone in Ophidion barbatum and compared it with both classical bone and cartilage. The rocker bone appears to be a new example of mineralisation. It consists of (1) a ground substance mainly composed of proteoglycans (mucopolysaccharide acid) and fibres and (2) a matrix containing small mineralised spherules composed of a bioapatite and fibrils. These spherules are embedded in mineralised cement of a similar composition to the spherules themselves. The rocker bone grows via the apposition of new apatite spherules at its periphery. These spherules are first secreted by the innermost fibroblast layer of the capsule contained in the rocker bone and then grow extracellularly. Blood vessels, which represent the only means of transport for matrix and mineral material, are numerous. They enter the rocker bone via the hyle and ramify towards the capsule. We propose to call this new kind of mineralised tissue constituting the rocker bone “frigolite” (the Belgian name for styrofoam) in reference to the presence of spherules of different sizes and the peculiarity of the rocker bone in presenting a smooth surface when fractured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Benjamin M (1990) The cranial cartilages of teleosts and their classification. J Anat 169:153–172

    PubMed  CAS  Google Scholar 

  • Benjamin M, Archer CW, Ralphs JR (1994) Cytoskeleton of cartilage cells. Microsc Res Tech 28:372–377

    Article  PubMed  CAS  Google Scholar 

  • Beresford WA (1981) Chondroid bone, secondary cartilage and metaplasia. Urban and Schwarzenberg, Baltimore

    Google Scholar 

  • Beresford WA (1993) Cranial skeletal tissue: diversity and evolutionary trends. In: Hanken J, Hall BK (eds) The skull vol 2. University of Chicago Press, Chicago, pp 69–130

    Google Scholar 

  • Cole AG, Hall BK (2004a) Cartilage is a metazoan tissue; integrating data from nonvertebrate sources. Acta Zool 85:69–80

    Article  Google Scholar 

  • Cole AG, Hall BK (2004b) The nature and significance of invertebrate cartilages revisited: distribution and histology of cartilage and cartilage-like tissues within the Metazoa. Zoology 107:261–274

    Article  PubMed  Google Scholar 

  • Dalconi MC, Meneghini C, Nuzzo S, Wenk R, Mobilio S (2003) Structure of bioapatite in human foetal bones: an X-ray diffraction study. Nucl Inst Met B 200:406–410

    Article  CAS  Google Scholar 

  • Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Studies in inorganic chemistry, vol 18. Elsevier Science, Amsterdam

    Google Scholar 

  • Gabe M (1968) Techniques histologiques. Masson et Cie, Paris

    Google Scholar 

  • Gartner LP, Hiatt JL (1997) Atlas en couleur d'histologie. Pradel, Paris

    Google Scholar 

  • Howes GJ (1992) Notes on the anatomy and classification of Ophidiiform fishes with particular references to the abyssal genus Acanthonus Günther, 1878. Bull Br Mus Nat Hist Zool 58:95–131

    Google Scholar 

  • Hughes JM, Cameron M, Crowley KD (1989) Structural variations in natural F, OH, and Cl apatites. Am Miner 74:870–876

    CAS  Google Scholar 

  • Huysseune A (1986) Late skeletal development at the articulation between upper pharyngeal jaws and neurocranial base in the fish, Astatotilapia elegans, with the participation of a chondroid form of bone. Am J Anat 177:119–137

    Article  PubMed  CAS  Google Scholar 

  • Huysseune A, Sire JY (1990) Ultrastructural observations on chondroid bone in the teleost fish Hemichromis bimaculatus. Tissue Cell 22:371–383

    Article  PubMed  CAS  Google Scholar 

  • Huysseune A, Sire JY (1992) Development of cartilage and bone tissues of the anterior part of the mandible in cichlid fish: a light and TEM study. Anat Rec 233:357–375

    Article  PubMed  CAS  Google Scholar 

  • Huysseune A, Verraes W (1986) Chondroid bone on the upper pharyngeal jaws and neurocranial base in tha adult fish Astatotilapia elegans. Am J Anat 177:527–535

    Article  PubMed  CAS  Google Scholar 

  • Legeros RZ (1985) Preparation of octacalcium phosphate (OCP): a direct fast method. Calcif Tissue Int 37:194–197

    Article  PubMed  CAS  Google Scholar 

  • Locardi B, Pazzaglia UE, Gabbi C, Profilo B (1993) Thermal behaviour of hydroxyapatite intended for medical applications. Biomaterials 14:437–441

    Article  PubMed  CAS  Google Scholar 

  • Matallanas J (1980) Etude de l'alimentation d'Ophidion barbatum (Pisces, Ophidiidae) dans la mer catalane. Cybium 1980:81–89

    Google Scholar 

  • Meunier FJ (1989) The acellularization process in osteichthyan bone. In: Splechtna H, Hilgers H (eds) Trends in vertebrate morphology. Fischer, Stuttgart, pp 443–446

    Google Scholar 

  • Meunier FJ, François Y (1992) Croissance du squelette chez les Téléostéens. I. Squelette, os, tissus squelettiques. Ann Biol 31:169–184

    Google Scholar 

  • Meunier FJ, Huysseune A (1992) The concept of bone tissue in Osteichthyes. Neth J Zool 42:445–458

    Article  Google Scholar 

  • Mortier A, Lemaitre J, Rodrique L, Rouxhet PG (1989) Synthesis and thermal behaviour of well-crystallized calcium-deficient phosphate apatite. J Solid State Chem 78:215–219

    Article  CAS  Google Scholar 

  • Moss ML (1961) Studies of the acellular bone of teleost fish. Acta Anat 46:343–462

    Article  PubMed  CAS  Google Scholar 

  • Moss ML (1963) The biology of acellular teleost bone. Ann N Y Acad Sci 109:227–350

    Article  Google Scholar 

  • Parmentier E, Diogo R (2006) Evolutionary trends of swimbladder sound mechanisms in some teleost fishes. In: Ladich F, Collin SP, Moller P, Kapoor BG (eds) Fish communication. Science, USA, pp 43–68

    Google Scholar 

  • Parmentier E, Chardon M, Vandewalle P (2002) Preliminary study on the ecomorphological signification of the sound-producing complex in Carapidae. In: Aerts PD, Août K, Herrel A, Van Damme R (eds) Topics in functional and ecological vertebrate morphology. Shaker, Maastricht, pp 139–151

    Google Scholar 

  • Parmentier E, Gennotte V, Focant B, Goffinet G, Vandewalle P (2003a) Characterization of the primary sonic muscles in Carapus acus (Carapidae): a multidisciplinary approach. Proc R Soc Lond [Biol] 270:2301–2308

    Article  CAS  Google Scholar 

  • Parmentier E, Vandewalle P, Lagardère JP (2003b) Sound-producing mechanisms and recordings in Carapini species (Teleostei, Pisces). J Comp Physiol [A] 189:283–292

    CAS  Google Scholar 

  • Parmentier E, Fontenelle N, Fine ML, Vandewalle P, Henrist C (2006) Functional morphology of the sonic apparatus in Ophidion barbatum (Teleostei, Ophidiidae). J Morphol 267:1461–1648

    Article  PubMed  CAS  Google Scholar 

  • Penel G, Delfosse C, Descamps M, Leroy G (2005) Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy. Bone 36:893–901

    Article  PubMed  CAS  Google Scholar 

  • Posner AS, Perloff A, Diorio AF (1958) Refinement of the hydroxyapatite structure. Acta Cryst 11:308–309

    Article  CAS  Google Scholar 

  • Rose JA (1961) Anatomy and sexual dimorphism of the swim bladder and vertebral column in Ophidion holbrooki (Pisces: Ophidiidae). Bull Mar Sci Gulf Carib 11:280–307

    Google Scholar 

  • Skinner HCW (2000) Minerals and human health. In: Vaughan DJ, Wogelius RA (eds) Environmental mineralogy, European union of mineralogy. Eotvos University Press, Budapest, pp 383–412

    Google Scholar 

  • Stevens A, Lowe J (1997) Histologie humaine. DeBoeck & Larcier, Bruxelles

    Google Scholar 

  • Toppets V, Pastoret V, De Behr V, Antoine N, Dessy C, Gabriel A (2004) Morphologie, croissance et remaniement du tissu osseux. Ann Med Vet 148:1–13

    Google Scholar 

  • Victoria EC, Gnanam FD (2002) Synthesis and characterisation of biphasic calcium phosphate. Trends Biomater Artif Organs 16:12–14

    Google Scholar 

  • Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28:271–298

    Article  CAS  Google Scholar 

  • Wopenka B, Pasteris JD (2005) A mineralogical perspective on the apatite in bones. Mater Sci Eng 25:131–143

    Article  Google Scholar 

  • Zhengwen Y, Yinshan J, Li xin Y, Bo W, Fangfei L, Shemmei S, Tianyi H (2005) Preparation and characterization of magnesium doped hydroxyapatite-gelatin nanocomposite. J Mater Chem 15:1807–1811

    Article  Google Scholar 

  • Zhou J, Zhang X, Chen J, Zeng S, De Groot K (1993) High temperature characteristics of synthetic hydroxyapatite. J Mater Sci Mater Med 4:83–85

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank N. Decloux for her technical assistance with the histology and electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Parmentier.

Additional information

E.P. is a Research Associate of the Belgian National Fund for Scientific Research (FRS-FNRS). This study was supported by grant no. 2.4574.01 from the Fonds National de la Recherche Scientifique, Belgium.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parmentier, E., Compère, P., Casadevall, M. et al. The rocker bone: a new kind of mineralised tissue?. Cell Tissue Res 334, 67–79 (2008). https://doi.org/10.1007/s00441-008-0665-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-008-0665-x

Keywords

Navigation