Skip to main content
Log in

Genetic inactivation of acetylcholinesterase causes functional and structural impairment of mouse soleus muscles

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Acetylcholinesterase (AChE) plays an essential role in neuromuscular transmission. Not surprisingly, neuromuscular transmission during repetitive nerve stimulation is severely depressed in the AChE knockout mouse (KO). However, whether this deficit in AChE leads to skeletal muscle changes is not known. We have studied the in vitro contractile properties of the postural and locomotor soleus muscles of adult KO and normal (wildtype, WT) mice, and this was completed by histological and biochemical analyses. Our results show that muscle weight, cross-sectional area of muscle fibres and absolute maximal isometric force are all reduced in KO mice compared with WT mice. Of interest, the relative amount of slow myosin heavy chain (MHC-1) in muscle homogenates and the percentage of muscle fibres expressing MHC-1 are decreased in the KO mice. Surprisingly, AChE ablation does not modify twitch kinetics, absolute maximal power, fatigue resistance or citrate synthase activity, despite the reduced number of slow muscle fibres. Thus, a deficit in AChE leads to alterations in the structure and function of muscles but these changes are not simply related to the reduced body weight of KO mice. Our results also suggest that this murine model of congenital myasthenic syndrome with endplate AChE deficiency combines alterations in both neurotransmission and intrinsic muscle properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adler M, Manley HA, Purcell AL, Deshpande SS, Hamilton TA, Kan RK, Oyler G, Lockridge O, Duysen EG, Sheridan RE (2004) Reduced acetylcholine receptor density, morphological remodeling, and butyrylcholinesterase activity can sustain muscle function in acetylcholinesterase knockout mice. Muscle Nerve 30:317–327

    Article  PubMed  CAS  Google Scholar 

  • Aldunate R, Casar JC, Brandan E, Inestrosa NC (2004) Structural and functional organization of synaptic acetylcholinesterase. Brain Res Brain Res Rev 47:96–104

    Article  PubMed  CAS  Google Scholar 

  • Ausoni S, Gorza L, Schiaffino S, Gundersen K, Lomo T (1990) Expression of myosin heavy chain isoforms in stimulated fast and slow rat muscles. J Neurosci 10:153–160

    PubMed  CAS  Google Scholar 

  • Belluardo N, Westerblad H, Mudo G, Casabona A, Bruton J, Caniglia G, Pastoris O, Grassi F, Ibanez CF (2001) Neuromuscular junction disassembly and muscle fatigue in mice lacking neurotrophin-4. Mol Cell Neurosci 18:56–67

    Article  PubMed  CAS  Google Scholar 

  • Buffelli M, Pasino E, Cangiano A (1997) Paralysis of rat skeletal muscle equally affects contractile properties as does permanent denervation. J Muscle Res Cell Motil 18:683–695

    Article  PubMed  CAS  Google Scholar 

  • Cousin X, Strahle U, Chatonnet A (2005) Are there non-catalytic functions of acetylcholinesterases? Lessons from mutant animal models. Bioessays 27:189–200

    Article  PubMed  CAS  Google Scholar 

  • De Bleecker J, Van den Abeele K, De Reuck J (1994) Electromyography in relation to end-plate acetylcholinesterase in rats poisoned by different organophosphates. Neurotoxicology 15:331–340

    PubMed  CAS  Google Scholar 

  • Derave W, Van Den Bosch L, Lemmens G, Eijnde BO, Robberecht W, Hespel P (2003) Skeletal muscle properties in a transgenic mouse model for amyotrophic lateral sclerosis: effects of creatine treatment. Neurobiol Dis 13:264–272

    Article  PubMed  CAS  Google Scholar 

  • Duysen EG, Stribley JA, Fry DL, Hinrichs SH, Lockridge O (2002) Rescue of the acetylcholinesterase knockout mouse by feeding a liquid diet; phenotype of the adult acetylcholinesterase deficient mouse. Brain Res Dev Brain Res 137:43–54

    Article  PubMed  CAS  Google Scholar 

  • Edman KA (1979) The velocity of unloaded shortening and its relation to sarcomere length and isometric force in vertebrate muscle fibres. J Physiol (Lond) 291:143–159

    CAS  Google Scholar 

  • Engel AG, Sine SM (2005) Current understanding of congenital myasthenic syndromes. Curr Opin Pharmacol 5:308–321

    Article  PubMed  CAS  Google Scholar 

  • Fitts RH, Riley DR, Widrick JJ (2000) Physiology of a microgravity environment (invited review): microgravity and skeletal muscle. J Appl Physiol 89:823–839

    PubMed  CAS  Google Scholar 

  • Fougerousse F, Gonin P, Durand M, Richard I, Raymackers JM (2003) Force impairment in calpain 3-deficient mice is not correlated with mechanical disruption. Muscle Nerve 27:616–623

    Article  PubMed  CAS  Google Scholar 

  • Girard E, Barbier J, Chatonnet A, Krejci E, Molgo J (2005) Synaptic remodeling at the skeletal neuromuscular junction of acetylcholinesterase knockout mice and its physiological relevance. Chem Biol Interact 157–158:87–96

    Article  PubMed  CAS  Google Scholar 

  • Goyenvalle A, Vulin A, Fougerousse F, Leturcq F, Kaplan JC, Garcia L, Danos O (2004) Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. Science 306:1796–1799

    Article  PubMed  CAS  Google Scholar 

  • Hamalainen N, Pette D (1996) Slow-to-fast transitions in myosin expression of rat soleus muscle by phasic high-frequency stimulation. FEBS Lett 399:220–222

    Article  PubMed  CAS  Google Scholar 

  • Hodgson JA, Roy RR, Higuchi N, Monti RJ, Zhong H, Grossman E, Edgerton VR (2005) Does daily activity level determine muscle phenotype? J Exp Biol 208:3761–3770

    Article  PubMed  Google Scholar 

  • Jakubiec-Puka A, Ciechomska I, Morga J, Matusiak A (1999) Contents of myosin heavy chains in denervated slow and fast rat leg muscles. Comp Biochem Physiol [B] Biochem Mol Biol 122:355–362

    Article  CAS  Google Scholar 

  • Karalliedde L, Baker D, Marrs TC (2006) Organophosphate-induced intermediate syndrome: aetiology and relationships with myopathy. Toxicol Rev 25:1–14

    Article  PubMed  CAS  Google Scholar 

  • Launay T, Noirez P, Butler-Browne G, Agbulut O (2006) Expression of slow myosin heavy chain during muscle regeneration is not always dependent on muscle innervation and calcineurin phosphatase activity. Am J Physiol Regul Integr Comp Physiol 290:R1508–R1514

    PubMed  CAS  Google Scholar 

  • Lewis DM, al-Amood WS, Schmalbruch H (1997) Effects of long-term phasic electrical stimulation on denervated soleus muscle: guinea-pig contrasted with rat. J Muscle Res Cell Motil 18:573–586

    Article  PubMed  CAS  Google Scholar 

  • Marechal G, Beckers-Bleukx G (1993) Force-velocity relation and isomyosins in soleus muscles from two strains of mice (C57 and NMRI). Pflugers Arch 424:478–487

    Article  PubMed  CAS  Google Scholar 

  • Maselli RA, Leung C (1993) Analysis of neuromuscular transmission failure induced by anticholinesterases. Ann N Y Acad Sci 681:402–404

    Article  PubMed  CAS  Google Scholar 

  • Mendias CL, Marcin JE, Calerdon DR, Faulkner JA (2006) Contractile properties of EDL and soleus muscles of myostatin-deficient mice. J Appl Physiol 101:898–905

    Article  PubMed  CAS  Google Scholar 

  • Merkulova T, Dehaupas M, Nevers MC, Creminon C, Alameddine H, Keller A (2000) Differential modulation of alpha, beta and gamma enolase isoforms in regenerating mouse skeletal muscle. Eur J Biochem 267:3735–3743

    Article  PubMed  CAS  Google Scholar 

  • Midrio M (2006) The denervated muscle: facts and hypotheses. A historical review. Eur J Appl Physiol 98:1–21

    Article  PubMed  Google Scholar 

  • Milatovic D, Zivin M, Hustedt E, Dettbarn WD (2000) Spin trapping agent phenyl-N-tert-butylnitrone prevents diisopropylphosphorofluoridate-induced excitotoxicity in skeletal muscle of the rat. Neurosci Lett 278:25–28

    Article  PubMed  CAS  Google Scholar 

  • Minic J, Chatonnet A, Krejci E, Molgo J (2003) Butyrylcholinesterase and acetylcholinesterase activity and quantal transmitter release at normal and acetylcholinesterase knockout mouse neuromuscular junctions. Br J Pharmacol 138:177–187

    Article  PubMed  CAS  Google Scholar 

  • Mouisel E, Blondet B, Escourrou P, Chatonnet A, Molgo J, Ferry A (2006) Outcome of acetylcholinesterase deficiency for neuromuscular functioning. Neurosci Res 55:389–396

    Article  PubMed  CAS  Google Scholar 

  • Muller JS, Mihaylova V, Abicht A, Lochmuller H (2007) Congenital myasthenic syndromes: spotlight on genetic defects of neuromuscular transmission. Expert Rev Mol Med 9:1–20

    Article  PubMed  Google Scholar 

  • Panenic R, Gisiger V, Gardiner PF (1999) Fatigability of rat hindlimb muscles after acute irreversible acetylcholinesterase inhibition. J Appl Physiol 87:1455–1462

    PubMed  CAS  Google Scholar 

  • Roy RR, Zhong H, Monti RJ, Vallance KA, Edgerton VR (2002) Mechanical properties of the electrically silent adult rat soleus muscle. Muscle Nerve 26:404–412

    Article  PubMed  Google Scholar 

  • Schiaffino S, Reggiani C (1996) Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev 76:371–423

    PubMed  CAS  Google Scholar 

  • Schiaffino S, Sandri M, Murgia M (2007) Activity-dependent signaling pathways controlling muscle diversity and plasticity. Physiology (Bethesda) 22:269–278

    CAS  Google Scholar 

  • Shavlakadze T, Grounds M (2006) Of bears, frogs, meat, mice and men: complexity of factors affecting skeletal muscle mass and fat. Bioessays 28:994–1009

    Article  PubMed  CAS  Google Scholar 

  • Srere PA (1969) Citrate synthase. Methods Enzymol 13:3–11

    Article  CAS  Google Scholar 

  • Thiermann H, Eyer P, Worek F, Szinicz L (2005) Effects of oximes on muscle force and acetylcholinesterase activity in isolated mouse hemidiaphragms exposed to paraoxon. Toxicology 214:190–197

    Article  PubMed  CAS  Google Scholar 

  • Van der Kloot W, Molgo J (1994) Quantal acetylcholine release at the vertebrate neuromuscular junction. Physiol Rev 74:899–991

    PubMed  Google Scholar 

  • Ventura-Clapier R, Kuznetsov AV, d'Albis A, Deursen J van, Wieringa B, Veksler VI (1995) Muscle creatine kinase-deficient mice. I. Alterations in myofibrillar function. J Biol Chem 270:19914–19920

    CAS  Google Scholar 

  • Witzemann V, Schwarz H, Koenen M, Berberich C, Villarroel A, Wernig A, Brenner HR, Sakmann B (1996) Acetylcholine receptor epsilon-subunit deletion causes muscle weakness and atrophy in juvenile and adult mice. Proc Natl Acad Sci USA 93:13286–13291

    Article  PubMed  CAS  Google Scholar 

  • Xie W, Stribley JA, Chatonnet A, Wilder PJ, Rizzino A, McComb RD, Taylor P, Hinrichs SH, Lockridge O (2000) Postnatal developmental delay and supersensitivity to organophosphate in gene-targeted mice lacking acetylcholinesterase. J Pharmacol Exp Ther 293:896–902

    PubMed  CAS  Google Scholar 

  • Yang D, He F, Li T (2001) Repetitive nerve stimulation and stimulation single fiber electromyography studies in rats intoxicated with single or mixed insecticides. Toxicology 161:111–116

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6:472–483

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Angélica Keller (UMR 7149, Créteil) in whose laboratory the enzyme activity measurements were carried out and Stéphanie Gay and Muriel Durand for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ferry.

Additional information

This work was supported by the Association Française contre les Myopathies, INSERM, University Pierre et Marie Curie, European Commission 6th Framework programme and the Myores Network of Excellence (contract 5111978).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vignaud, A., Fougerousse, F., Mouisel, E. et al. Genetic inactivation of acetylcholinesterase causes functional and structural impairment of mouse soleus muscles. Cell Tissue Res 333, 289–296 (2008). https://doi.org/10.1007/s00441-008-0640-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-008-0640-6

Keywords

Navigation