Skip to main content
Log in

Immunohistochemical evidence for the presence of tryptophan hydroxylase in the brains of insects as revealed by sheep anti-tryptophan hydroxylase polyclonal antibody

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Immediately following the discovery of tryptophan hydroxylase in Drosophila, we demonstrated the presence of tryptophan hydroxylase in the brain of the beetle Harmonia axyridis (Coleoptera: Coccinellidae). However, whether tryptophan hydroxylase is present in the brains of other insects is still a matter of discussion. In the current study, sheep anti-tryptophan hydroxylase polyclonal antibody has been applied to test for tryptophan hydroxylase immunoreactivity in a broader taxonomic range of insect brains, including holometabolous and hemimetabolous insects: one species each of Coleoptera, Hymenoptera, Diptera, and Blattaria, and two species of Lepidoptera. All species show consistent tryptophan hydroxylase immunoreactivity with distribution patterns matching that of serotonin. The immuno-positive results of such an antibody in brains from diverse orders of insects suggest that specific tryptophan hydroxylase responsible for central serotonin synthesis is probably present in the brains of all insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alcaňiz S, Silva FJ (1997) Phenylalanine hydroxylase participation in the synthesis of serotonin and pteridines in Drosophila melanogaster. Comp Biochem Physiol [C] 116:205–212

    Google Scholar 

  • Bao XX, Zheng YP, Zhang HS, Xia YZ, Song CT (1999) CP embedding agent and its application to the serial section of the body wall tissue of insects. Chinese Sci Bull 44:1021–1024

    Article  Google Scholar 

  • Bao XX, Tian XX, Hu XH, Zhao ZF, Qu YT, Song CT (2006) Discovery of specific tryptophan hydroxylase in the brain of the beetle Harmonia axyridis. Brain Res 1073–1074:202–208

    Article  PubMed  CAS  Google Scholar 

  • Bender DA, Joseph MH, Kochen W, Steinhart H (1987) Progress in tryptophan and serotonin research II. Proceedings of ISTRY-86, the 5th meeting of the International Study Group for Tryptophan Research. Walter de Gruyter, Berlin

    Google Scholar 

  • Boularand S, Biguet NF, Vidal B, Veron M, Mallet J, Vincent J, Dufour S, Vernier P (1998) Tyrosine hydroxylase in the European eel (Anguilla anguilla): cDNA cloning, brain distribution, and phylogenetic analysis. J Neurochem 71:460–470

    Article  PubMed  CAS  Google Scholar 

  • Claassen DE, Kammer AE (1986) Effects of octopamine, dopamine and serotonin on production of flight motor output by thoracic ganglia of Manduca sexta. J Neurobiol 17:1–14

    Article  PubMed  CAS  Google Scholar 

  • Coleman CM, Neckameyer WS (2004) Substrate regulation of serotonin and dopamine synthesis in Drosophila. Invert Neurosci 5:85–96

    Article  PubMed  CAS  Google Scholar 

  • Coleman CM, Neckameyer WS (2005) Serotonin synthesis by two distinct enzymes in Drosophila melanogaster. Arch Insect Biochem Phys 59:12–31

    Article  CAS  Google Scholar 

  • Gatellier L, Nagao T, Kanzaki R (2004) Serotonin modifies the sensitivity of the male silkmoth to pheromone. J Exp Biol 207:2487–2496

    Article  PubMed  CAS  Google Scholar 

  • Grenett HE, Ledley FD, Reed L, Woo SLC (1987) Full-length cDNA for rabbit tryptophan hydroxylase: functional domains and evolution of aromatic amino acid hydroxylases. Proc Natl Acad Sci USA 84:5530–5534

    Article  PubMed  CAS  Google Scholar 

  • Grosmaitre X, Marion-Poll F, Renou M (2001) Biogenic amines modulate olfactory receptor neurons firing activity in Mamestra brassicae. Chem Senses 26:653–661

    Article  PubMed  CAS  Google Scholar 

  • Hill ES, Okada K, Kanzaki R (2003) Visualization of modulatory effects of serotonin in the silkmoth antennal lobe. J Exp Biol 206:345–352

    Article  PubMed  CAS  Google Scholar 

  • Homberg U (1994) Distribution of neurotransmitters in the insect brain. Prog Zool 40:301–306

    Google Scholar 

  • Homberg U, Hildebrand JG (1989) Serotonin-immunoreactive neurons in the median protocerebrum and suboesophageal ganglion of the sphinx moth Manduca sexta. Cell Tissue Res 258:1–24

    Article  PubMed  CAS  Google Scholar 

  • Kravitz EA, Edwards DH (1997) Serotonin, social status and aggression. Curr Opin Neurosci 7:812–819

    Article  Google Scholar 

  • Ledley FD, Grenett HE, Bartos DP, Tuinen P, Ledbetter DH, Woo SLC (1987) Assignment of human tryptophan hydroxylase locus to chromosome 11: gene duplication and translocation in evolution of aromatic amino acid hydroxylases. Somat Cell Mol Genet 13:575–580

    Article  PubMed  CAS  Google Scholar 

  • Manastirioti M (1999) Biogenic amine systems in Drosophila melanogaster. Microsc Res Tech 45:106–121

    Article  Google Scholar 

  • Menzel R, Heyne A, Kinzel C, Gerber B, Fiala A (1999) Pharmacological dissociation between the reinforcing, sensitizing, and response-releasing functions of reward in honeybee classical conditioning. Behav Neurosci 113:744–754

    Article  PubMed  CAS  Google Scholar 

  • Nässel DR (1988) Serotonin and serotonin-immunoreactive neurons in the nervous system of insects. Prog Neurobiol 30:1–85

    Article  PubMed  Google Scholar 

  • Neckameyer WS, White K (1992) A single locus encodes both phenylalanine hydroxylase and tryptophan hydroxylase activities in Drosophila. J Biol Chem 267:4199–4206

    PubMed  CAS  Google Scholar 

  • Neckameyer WS, Coleman CM, Eadie S, Goodwin SF (2007) Compartmentalization of neuronal and peripheral serotonin synthesis in Drosophila melanogaster. Genes Brain Behav 6:1–14

    Article  CAS  Google Scholar 

  • Patton SJ, Luke GN, Holland PWH (1998) Complex history of a chromosomal paralogy region: insights from amphioxus aromatic amino acid hydroxylase genes and insulin-related genes. Mol Biol Evol 15:1373–1380

    PubMed  CAS  Google Scholar 

  • Saifullah ASM, Tomoika K (2002) Serotonin sets the day state in the neurons that control coupling between the optic lobe circadian pacemakers in the cricket Gryllus bimaculatus. J Exp Biol 205:1305–1314

    PubMed  CAS  Google Scholar 

  • Stevenson PA, Hofmann HA, Schoch K, Schildberger K (2000) The fight or flight responses of crickets depleted of biogenic amines. J Neurobiol 43:107–120

    Article  PubMed  CAS  Google Scholar 

  • Stevenson PA, Dyakonova V, Rillich J, Schildberger K (2005) Octopamine and experience-dependent modulation of aggression in crickets. J Neurosci 25:1431–1441

    Article  PubMed  CAS  Google Scholar 

  • The C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018

    Article  Google Scholar 

  • Walther DJ, Bader M (2003) A unique central tryptophan hydroxylase isoform. Biochem Pharmacol 66:1673–1680

    Article  PubMed  CAS  Google Scholar 

  • Walther DJ, Peter JU, Bashammakh S, Hortnagl H, Voits M, Fink H, Bader M (2003) Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299:76

    Article  PubMed  CAS  Google Scholar 

  • Yuan Q, Lin F, Zheng X, Sehgal A (2005) Serotonin modulates circadian entrainment in Drosophila. Neuron 47:115–127

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Samuel Beshers for assistance with editing and English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuexiang Bao.

Additional information

This work was supported by grants from the National Natural Science Foundation of China (grant no. 30470546) and the Natural Science Foundation of Jilin Province (grant no. 20030550–7).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOC 1.23 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, X., Tian, X., Zhao, Z. et al. Immunohistochemical evidence for the presence of tryptophan hydroxylase in the brains of insects as revealed by sheep anti-tryptophan hydroxylase polyclonal antibody. Cell Tissue Res 332, 555–563 (2008). https://doi.org/10.1007/s00441-008-0596-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-008-0596-6

Keywords

Navigation