Skip to main content
Log in

Spermiogenesis and chromatin condensation in the common tree shrew, Tupaia glis

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

We have investigated the cellular characteristics, especially chromatin condensation and the basic nuclear protein profile, during spermiogenesis in the common tree shrew, Tupaia glis. Spermatids could be classified into Golgi phase, cap phase, acrosome phase, and maturation phase. During the Golgi phase, chromatin was composed of 10-nm and 30-nm fibers with few 50-nm to 60-nm knobby fibers. The latter were then transformed into 70-nm knobby fibers during the cap phase. In the acrosome phase, all fibers were packed into the highest-order knobby fibers, each about 80–100 nm in width. These chromatin fibers became tightly packed in the maturation phase. In a mature spermatozoon, the discoid-shaped head was occupied by the acrosome and completely condensed chromatin. H3, the core histone, was detected by immunostaining in all nuclei of germ cell stages, except in spermatid steps 15–16 and spermatozoa. Protamine, the basic nuclear protein causing the tight packing of sperm chromatin, was detected by immunofluorescence in the nuclei of spermatids at steps 12–16 and spermatozoa. Cross-immunoreactivity of T. glis H3 and protamine to those of primates suggests the evolutionary resemblance of these nuclear basic proteins in primate germ cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Auger J, Dadoune JP (1993) Nuclear status of human sperm cells by transmission electron microscopy and image cytometry: changes in nuclear shape and chromatin texture during spermiogenesis and epididymal transit. Biol Reprod 49:166–175

    Article  PubMed  CAS  Google Scholar 

  • Ausio J (1999) Histone H1 and evolution of sperm nuclear basic proteins. J Biol Chem 274:31115–31118

    Article  PubMed  CAS  Google Scholar 

  • Balhorn R (1982) A model for the structure of chromatin in mammalian sperm. J Cell Biol 93:298–305

    Article  PubMed  CAS  Google Scholar 

  • Balhorn R, Cosman M, Thornton K, Krishnan VV, Corzett M, Bench G, Kramer C, Lee JD IV, Hud NV, Allen MJ, Prieto M, Meyer-Iese W, Brown JT, Kirz J, Zhang X, Bradbury EM, Maki G, Braun RE, Breed W (1999) Protamine mediated condensation of DNA in mammalian sperm. In: Gagnon C (ed) The male gamete: from basic science to clinical applications. Cache River, Vienna, pp 55–70

    Google Scholar 

  • Balhorn R, Brewer L, Corzett M (2000) DNA condensation by protamine and arginine-rich peptides: analysis of toroid stability using single DNA molecules. Mol Reprod Dev 56:230–234

    Article  PubMed  CAS  Google Scholar 

  • Bernstein MH, Teichman RJ (1972) Regional differentiation in the heads of spermatozoa of rabbit, man and bull. Am J Anat 133:165–178

    Article  PubMed  CAS  Google Scholar 

  • Brewer LR, Corzett M, Balhorn R (1999) Protamine-induced condensation and decondensation of the same DNA molecule. Science 286:120–123

    Article  PubMed  CAS  Google Scholar 

  • Calvin HI (1976) Comparative analysis of the nuclear basic proteins in rat, human, guinea pig, mouse and rabbit spermatozoa. Biochim Biophys Acta 434:377–389

    PubMed  CAS  Google Scholar 

  • Calvin HI, Bedford JM (1971) Formation of disulfide bonds in the nucleus and accessory structures of mammalian spermatozoa during maturation in the epididymis. J Reprod Fertil 13:65–75

    Google Scholar 

  • Chevaillier P (1983) Some aspects of chromatin organization in sperm nuclei. In: Andre J (ed) The sperm cell: fertilizing power, surface properties, motility, nucleus and acrosome, evolutionary aspects. Nijhoff, London, pp 179–196

    Google Scholar 

  • Clermont Y (1963) The cycle of the seminiferous epithelium in man. Am J Anat 112:35–51

    Article  PubMed  CAS  Google Scholar 

  • Clermont Y (1972) Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev 52:198–236

    PubMed  CAS  Google Scholar 

  • Clermont Y, Leblond CP (1955) Spermiogenesis of man, monkey, ram and other mammals as shown by the periodic acid-Schiff technique. Am J Anat 96:229–253

    Article  PubMed  CAS  Google Scholar 

  • Collins PM, Thang WN, Lofts B (1982) Anatomy and function of the reproductive tract in the captive male tree shrew (Tupaia belangeri). Biol Reprod 26:169–182

    Article  PubMed  CAS  Google Scholar 

  • Dadoune JP, Alfonsi MF (1986) Ultrastructural and cytochemical changes of the head components of human spermatids and spermatozoa. Gamete Res 14:33–46

    Article  Google Scholar 

  • De Kretser DM, Loveland KL, Meinhardt A, Simorangkir D, Wreford N (1998) Spermatogenesis. Hum Reprod 13:1–8

    Article  PubMed  Google Scholar 

  • Fawcett DW (1965) The anatomy of the mammalian spermatozoon with particular reference to the guinea pig. Z Zellforsch 67:279–296

    Article  PubMed  CAS  Google Scholar 

  • Fornes MW, Bustos-Obregon E (1994) Study of nuclear decondensation of the rat spermatozoa by reducing agents during epididymal transit. Andrologia 26:87–92

    PubMed  CAS  Google Scholar 

  • Holstein AF (1976) Ultrastructural observations on the differentiation of spermatids in man. Andrologia 8:157–165

    Article  PubMed  CAS  Google Scholar 

  • Johnson L (1995) Efficiency of spermatogenesis. Microsc Res Tech 32:385–422

    Article  PubMed  CAS  Google Scholar 

  • Kerr JB (1992) Functional cytology of the human testis. Baillieres Clin Endocrinol Metab 6:235–250

    Article  PubMed  CAS  Google Scholar 

  • Kistler WS, Henriksen K, Mali P, Parvinen M (1996) Sequential expression of nucleoproteins during rat spermiogenesis. Exp Cell Res 225:374–381

    Article  PubMed  CAS  Google Scholar 

  • Lalli M, Clermont Y (1981) Structural changes of the head components on the rat spermatid during late spermiogenesis. Am J Anat 160:419–434

    Article  PubMed  CAS  Google Scholar 

  • Le Lannic G, Arkhis A, Vendrely E, Chevaillier P, Dadoune JP (1993) Production, characterization, and immunocytochemical applications of monoclonal antibodies to human sperm protamines. Mol Reprod Dev 36:106–112

    Article  PubMed  Google Scholar 

  • Leblond CP, Clermont Y (1952a) Spermiogenesis of rat, mouse, hamster and guinea pig as revealed by the “Periodic acid-Fuchsin sulfurous acid” technique. Am J Anat 90:167–206

    Article  PubMed  CAS  Google Scholar 

  • Leblond CP, Clermont Y (1952b) Definition of the stages of the cycle of seminiferous epithelium in the rat. Ann N Y Acad Sci 55:548–573

    Article  PubMed  CAS  Google Scholar 

  • Lombardi J (1998) Gamete and their reproduction. In: Lombardi J (ed) Comparative vertebrate reproduction. Kluwer Academic, London, pp 109–130

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Maeda S, Endo H, Kimura J, Rerkamnuaychoke W, Chungsamarnyart N, Yamada J, Kurohmarum, Hayashi Y, Nishida T (1996) Classification of the cycle of the seminiferous epithelium in the common tree shrew (Tupaia glis). J Vet Med Sci 58:481–484

    PubMed  CAS  Google Scholar 

  • Martinage A, Arkhis A, Alimi E, Sautiere P, Chevaillier P (1990) Molecular characterization of nuclear basic protein HPI1, a putative precursor of human sperm protamines HP2 and HP3. Eur J Biochem 191:449–451

    Article  PubMed  CAS  Google Scholar 

  • Mething A (1998) The establishment of spermatogenesis in the seminiferous epithelium of the pubertal golden hamster (Mesocricetus auratus). Adv Anat Embryol Cell Biol 140:1–92

    Google Scholar 

  • Moneisi V (1971) Chromosome activities during meiosis and spermiogenesis. J Reprod Fertil 13:1–14

    Google Scholar 

  • Oko RJ, Clermont Y (1990) Mammalian spermatozoa: structure and assembly of the tail. In: Gagnon C (ed) Control of sperm mobility: biological and clinical aspects. CRC Press, Florida, pp 4–21

    Google Scholar 

  • Oko R, Clermont Y (1991) Origin and distribution of perforatorial proteins during spermatogenesis of the rat: an immunocytochemical study. Anat Rec 230:489–501

    Article  PubMed  CAS  Google Scholar 

  • Oko RJ, Jando V, Wagner CL, Kistler WS, Hermo LS (1996) Chromatin reorganization in rat spermatids during the disappearance of testis-specific histone, H1t, and the appearance of transition proteins TP1 and TP2. Biol Reprod 54:1141–1157

    Article  PubMed  CAS  Google Scholar 

  • Panyim S, Chalkley R (1969) High resolution acrylamide gel electrophoresis of histones. Arch Biochem Biophys 130:337

    Article  PubMed  CAS  Google Scholar 

  • Poonkhum R, Pongmayteegul S, Meeratana W, Pradidarcheep W, Thongpila S, Mingsakul T, Somana R (2000) Cerebral microvascular architecture in the common tree shrew (Tupaia glis) revealed by plastic corrosion casts. Microsc Res Tech 50:411–418

    Article  PubMed  CAS  Google Scholar 

  • Prigent Y, Muller S, Dadoune JP (1996) Immunoelectron microscopical distribution of histones H2B and H3 and protamines during human spermiogenesis. Mol Hum Reprod 2:929–935

    Article  PubMed  CAS  Google Scholar 

  • Roux C, Gusse M, Chevaillier P, Dadoune JP (1988) An antiserum against protamines for immunohistochemical studies of histone to protamine transition during human spermiogenesis. J Reprod Fertil 82:35–42

    Article  PubMed  CAS  Google Scholar 

  • Steger K (1999) Transcriptional and translational regulation of gene expression in haploid spermatids. Anat Embryol (Berl) 199:471–487

    Article  CAS  Google Scholar 

  • Steger K, Klonisch T, Gavenis K, Drabent B, Doenecke D, Bergmann M (1998) Expression of mRNA and protein of nucleoproteins during human spermiogenesis. Mol Hum Reprod 4:939–945

    Article  PubMed  CAS  Google Scholar 

  • Suphamungmee W, Apisawetakan S, Weerachatyanukul W, Wanichanon C, Sretarugsa P, Poomtong T, Sobhon P (2005) Basic nuclear protein pattern and chromatin condensation in the male germ cells of a tropical abalone, Haliotis asinina. Mol Reprod Dev 70:211–221

    Article  PubMed  CAS  Google Scholar 

  • Tanphaichitr N, Sobhon P, Taluppeth N, Chalermisarachai P (1978) Basic nuclear proteins in testicular cells and ejaculated spermatozoa in man. Exp Cell Res 117:347–356

    Article  PubMed  CAS  Google Scholar 

  • Turner RM (2006) Moving to the beat: a review of mammalian sperm motility regulation. Reprod Fertil Dev 18:25–38

    Article  PubMed  Google Scholar 

  • Van Roijen JH, Ooms MP, Spaargaren MC, Baarends WM, Weber RFA, Grootegoed JA, Vreeburg JTM (1998) Immunoexpression of testis-specific histone2B in human spermatozoa and testis tissue. Hum Reprod 13:1559–1566

    Article  PubMed  Google Scholar 

  • Wanichanon C, Weerachatyanukul W, Suphamungmee W, Meepool A, Apisawetakan S, Linthong V, Sretarugsa P, Chavadej J, Sobhon P (2001) Chromatin condensation during spermiogenesis in rats. Sci Asia 27:211–220

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Rod Balhorn, Lawrence Livermore National Laboratory, California, for kindly providing the monoclonal antibody against human-protamine, HuP1N fraction, and to Dr. Sirikul Manochantr, Thammasat University, Thailand, for providing the polyclonal antibody to chick-H3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaitip Wanichanon.

Additional information

This work was supported by the Thailand Research Fund (Senior Research Fellowship to Prof. Prasert Sobhon).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suphamungmee, W., Wanichanon, C., Vanichviriyakit, R. et al. Spermiogenesis and chromatin condensation in the common tree shrew, Tupaia glis . Cell Tissue Res 331, 687–699 (2008). https://doi.org/10.1007/s00441-007-0557-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0557-5

Keywords

Navigation