Skip to main content

Advertisement

Log in

Discoidin domain of Del1 protein contributes to its deposition in the extracellular matrix

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The extracellular matrix (ECM) acts as a critical factor during morphogenesis. Because the organization of the ECM directly influences the structure of tissues and organs, a determination of the way that ECM organization is regulated should help to clarify morphogenesis. We have analyzed the assembly of Del1, an ECM protein produced by endothelial cells in embryos, in the ECM. Del1 consists of three epidermal growth factor repeats (E1–E3) at its N-terminus and two discoidin domains (C1, C2) at its C-terminus. Experiments with various deletion mutants of Del1 have revealed that fragments containing the C-terminus of C1, which has a lectin-like structure, direct deposition in the ECM. The efficiency of deposition varies according to the presence of other domains in Del1. A fragment containing E3 and C1 has the strongest deposition activity, whereas fragments containing C2, which is highly homologous to C1, have low deposition activity. Digestion of ECM with hyaluronidase from bovine testis releases Del1 from the ECM, suggesting that glycosaminoglycans are involved in the deposition of Del1. In vivo gene transfer experiments have shown that fusion with the deposition domain of Del1 dramatically alters the distribution of exogenous proteins in mice. Thus, the extent of Del1 deposition may modify the organization of the ECM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andersen MH, Graversen H, Fedosov SN, Petersen TE, Rasmussen JT (2000) Functional analyses of two cellular binding domains of bovine lactadherin. Biochemistry 39:6200–6206

    Article  PubMed  CAS  Google Scholar 

  • Aoka Y, Johnson FL, Penta K, Hirata Ki K, Hidai C, Schatzman R, Varner JA, Quertermous T (2002) The embryonic angiogenic factor Del1 accelerates tumor growth by enhancing vascular formation. Microvasc Res 64:148–161

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner S, Hofmann K, Chiquet-Ehrismann R, Bucher P (1998) The discoidin domain family revisited: new members from prokaryotes and a homology-based fold prediction. Protein Sci 7:1626–1631

    Article  PubMed  CAS  Google Scholar 

  • Hanayama R, Tanaka M, Miwa K, Nagata S (2004) Expression of developmental endothelial locus-1 in a subset of macrophages for engulfment of apoptotic cells. J Immunol 172:3876–3882

    PubMed  CAS  Google Scholar 

  • Hidai C, Zupancic T, Penta K, Mikhail A, Kawana M, Quertermous EE, Aoka Y, Fukagawa M, Matsui Y, Platika D, Auerbach R, Hogan BL, Snodgrass R, Quertermous T (1998) Cloning and characterization of developmental endothelial locus-1: an embryonic endothelial cell protein that binds the alphavbeta3 integrin receptor. Genes Dev 12:21–33

    PubMed  CAS  Google Scholar 

  • Hidai C, Kawana M, Habu K, Kazama H, Kawase Y, Iwata T, Suzuki H, Quertermous T, Kokubun S (2005) Overexpression of the Del1 gene causes dendritic branching in the mouse mesentery. Anat Rec 287:1165–1175

    Article  CAS  Google Scholar 

  • Kadler KE, Hojima Y, Prockop DJ (1987) Assembly of collagen fibrils de novo by cleavage of the type I pC-collagen with procollagen C-proteinase. Assay of critical concentration demonstrates that collagen self-assembly is a classical example of an entropy-driven process. J Biol Chem 262:15696–15701

    PubMed  CAS  Google Scholar 

  • Kim SW, Quinn-Allen MA, Camp JT, Macedo-Ribeiro S, Fuentes-Prior P, Bode W, Kane WH (2000) Identification of functionally important amino acid residues within the C2-domain of human factor V using alanine-scanning mutagenesis. Biochemistry 39:1951–1958

    Article  PubMed  CAS  Google Scholar 

  • Kittur FS, Manithody C, Morrissey JH, Rezaie AR (2004) The cofactor function of the N-terminal domain of tissue factor. J Biol Chem 279:39745–39749

    Article  PubMed  CAS  Google Scholar 

  • Knobe KE, Persson KE, Sjorin E, Villoutreix BO, Stenflo J, Ljung RC (2003) Functional analysis of the EGF-like domain mutations Pro55Ser and Pro55Leu, which cause mild hemophilia B. J Thromb Haemost 1:782–790

    Article  PubMed  CAS  Google Scholar 

  • Li S, Van Den Diepstraten C, D’Souza SJ, Chan BM, Pickering JG (2003) Vascular smooth muscle cells orchestrate the assembly of type I collagen via alpha2beta1 integrin, RhoA, and fibronectin polymerization. Am J Pathol 163:1045–1056

    PubMed  CAS  Google Scholar 

  • Macedo-Ribeiro S, Bode W, Huber R, Quinn-Allen MA, Kim SW, Ortel TL, Bourenkov GP, Bartunik HD, Stubbs MT, Kane WH, Fuentes-Prior P (1999) Crystal structures of the membrane-binding C2 domain of human coagulation factor V. Nature 402:434–439

    Article  PubMed  CAS  Google Scholar 

  • Miyahara M, Njieha FK, Prockop DJ (1982) Formation of collagen fibrils in vitro by cleavage of procollagen with procollagen proteinases. J Biol Chem 257:8442–8448

    PubMed  CAS  Google Scholar 

  • Ohlin AK, Landes G, Bourdon P, Oppenheimer C, Wydro R, Stenflo J (1988) Beta-hydroxyaspartic acid in the first epidermal growth factor-like domain of protein C. Its role in Ca2+ binding and biological activity. J Biol Chem 263:19240–19248

    PubMed  CAS  Google Scholar 

  • Penta K, Varner JA, Liaw L, Hidai C, Schatzman R, Quertermous T (1999) Del1 induces integrin signaling and angiogenesis by ligation of alphaVbeta3. J Biol Chem 274:11101–11109

    Article  PubMed  CAS  Google Scholar 

  • Persson KE, Villoutreix BO, Thamlitz AM, Knobe KE, Stenflo J (2002) The N-terminal epidermal growth factor-like domain of coagulation factor IX. Probing its functions in the activation of factor IX and factor X with a monoclonal antibody. J Biol Chem 277:35616–35624

    Article  PubMed  CAS  Google Scholar 

  • Rees DJ, Jones IM, Handford PA, Walter SJ, Esnouf MP, Smith KJ, Brownlee GG (1988) The role of beta-hydroxyaspartate and adjacent carboxylate residues in the first EGF domain of human factor IX. EMBO J 7:2053–2061

    PubMed  CAS  Google Scholar 

  • Ruhrberg C, Gerhardt H, Golding M, Watson R, Ioannidou S, Fujisawa H, Betsholtz C, Shima DT (2002) Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16:2684–2698

    Article  PubMed  CAS  Google Scholar 

  • Sakai T, Larsen M, Yamada KM (2003) Fibronectin requirement in branching morphogenesis. Nature 423:876–881

    Article  PubMed  CAS  Google Scholar 

  • Sottile J, Hocking DC (2002) Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Mol Biol Cell 13:3546–3559

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Totsuka R, Miyatani S, Kurata S, Sato S, Katoh I, Kobayashi S, Ikawa Y (2005) Production of the long and short forms of MFG-E8 by epidermal keratinocytes. Cell Tissue Res 321:185–193

    Article  PubMed  CAS  Google Scholar 

  • Zhong J, Eliceiri B, Stupack D, Penta K, Sakamoto G, Quertermous T, Coleman M, Boudreau N, Varner JA (2003) Neovascularization of ischemic tissues by gene delivery of the extracellular matrix protein Del-1. J Clin Invest 112:30–41

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiaki Hidai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hidai, C., Kawana, M., Kitano, H. et al. Discoidin domain of Del1 protein contributes to its deposition in the extracellular matrix. Cell Tissue Res 330, 83–95 (2007). https://doi.org/10.1007/s00441-007-0456-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0456-9

Keywords

Navigation