Skip to main content

Advertisement

Log in

Hyperalgesia in response to traumatic occlusion and GFAP expression in rat parabranchial nucleus: modulation with fluorocitrate

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

We have examined, by immunocytochemical methods and nociceptive behavior assessment in rats, whether astrocytes in the parabrachial nucleus (PBN) are involved in the regulation of traumatic occlusion. The expression of glial fibrillary acidic protein (GFAP) in PBN of ipsilateral and contralateral sides was up-regulated 4 h after occlusal changes in molars, reached peak levels at 24 h, and was then gradually down-regulated. PBN astrocytes activated by traumatic occlusion were found to have enlarged cell bodies and thickened processes within 8 h. An inhibitor of glia metabolism (FCA, fluorocitrate) reduced astrocyte activation and significantly attenuated the development of pain hypersensitivity in this model. The results suggested that the GFAP-immunoreactive astrocytes in PBN within the bridge of Varolius were activated by traumatic occlusion, and that they were involved in the transmission and modulation of nociceptive information in the central nervous system. However, although astrocytes in PBN are thus probably involved in causing post-occlusal hyperalgesia, we have not been able to exclude that astrocytes at other locations also contribute to this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen GV, Barbrick B, Esser MJ (1996) Trigeminal-parabrachial connections: possible pathway for nociception-induced cardiovascular reflex responses. Brain Res 715:125–135

    Article  PubMed  CAS  Google Scholar 

  • Anderson LC, Rao RD (2001) Interleukin-6 and nerve growth factor levels in peripheral nerve and brainstem after trigeminal nerve injury in the rat. Arch Oral Biol 46:633–640

    Article  PubMed  CAS  Google Scholar 

  • Araque A, Martin ED, Perea G, Arellano JI, Buno W (2002) Synaptically released acetylcholine evokes Ca2+ elevations in astrocytes in hippocampal slices. J Neurosci 22:2443–2450

    PubMed  CAS  Google Scholar 

  • Benarroch EE (2006) Pain-autonomic interactions. Neurol Sci 27(Suppl 2):S130–S133

    Article  PubMed  Google Scholar 

  • Bernard JF, Besson JM (1990) The spino(trigemino)pontoamygdaloid pathway: electrophysiological evidence for an involvement in pain processes. J Neurophysiol 63:473–490

    PubMed  CAS  Google Scholar 

  • Bernard JF, Alden M, Besson JM (1993) The organization of the efferent projections from the pontine parabrachial area to the amygdaloid complex: a Phaseolus vulgaris leucoagglutinin (PHA-L) study in the rat. J Comp Neurol 329:201–229

    Article  PubMed  CAS  Google Scholar 

  • Bester H, Menendez L, Besson JM, Bernard JF (1995) Spino (trigemino) parabrachiohypothalamic pathway: electrophysiological evidence for an involvement in pain processes. J Neurophysiol 73:568–585

    PubMed  CAS  Google Scholar 

  • Bourgeais L, Gauriau C, Monconduit L, Villanueva L, Bernard JF (2003) Dendritic domains of nociceptive-responsive parabrachial neurons match terminal fields of lamina I neurons in the rat. J Comp Neurol 464:238–256

    Article  PubMed  Google Scholar 

  • Dallel R, Ricard O, Raboisson P (2004) Organization of parabrachial projections from the spinal trigeminal nucleus oralis: an anterograde tracing study in the rat. J Comp Neurol 470:181–191

    Article  PubMed  Google Scholar 

  • Davar G, Hama A, Deykin A, Vos B, Maciewicz R (1991) MK-801 blocks the development of thermal hyperalgesia in a rat model of experimental painful neuropathy. Brain Res 553:327–330

    Article  PubMed  CAS  Google Scholar 

  • Duffy S, MacVicar BA (1995) Adrenergic calcium signaling in astrocyte networks within the hippocampal slice. J Neurosci 15:5535–5550

    PubMed  CAS  Google Scholar 

  • Dupont JS (2006) Acute malocclusion. Gen Dent 54:102–104

    PubMed  Google Scholar 

  • Fellin T, Carmignoto G (2004) Neurone-to-astrocyte signalling in the brain represents a distinct multifunctional unit. J Physiol (Lond) 559:3–15

    Article  CAS  Google Scholar 

  • Ferreira SH, Nakamura M, Abreu Castro MS de (1978) The hyperalgesic effects of prostacyclin and prostaglandin E2. Prostaglandins 16:31–37

    Article  PubMed  CAS  Google Scholar 

  • Fu K, Ma X, Zhang Z, Sun K, Wang J, Zhu X (1999) Ultrastructural changes of TMJ articular cartilage and synovial membrane following occlusal trauma in rabbit. Chin J Traumatol 2:105–109

    PubMed  Google Scholar 

  • Fujiyoshi Y, Yamashiro T, Deguchi T, Sugimoto T, Takano-Yamamoto T (2000) The difference in temporal distribution of c-Fos immunoreactive neurons between the medullary dorsal horn and the trigeminal subnucleus oralis in the rat following experimental tooth movement. Neurosci Lett 283:205–208

    Article  PubMed  CAS  Google Scholar 

  • Green MS, Levine DF (1996) Occlusion and the periodontium: a review and rationale for treatment. J Calif Dent Assoc 24:19–27

    PubMed  CAS  Google Scholar 

  • Hallmon WW (2001) Occlusal trauma–periodontal concerns. Tex Dent J 118:956–960

    PubMed  CAS  Google Scholar 

  • Hayashi H, Tabata T (1990) Pulpal and cutaneous inputs to somatosensory neurons in the parabrachial area of the cat. Brain Res 511:177–179

    Article  PubMed  CAS  Google Scholar 

  • Hiroshima K, Maeda T, Hanada K, Wakisaka S (2001) Temporal and spatial distribution of Fos protein in the parabrachial nucleus neurons during experimental tooth movement of the rat molar. Brain Res 908:161–173

    Article  PubMed  CAS  Google Scholar 

  • Hu B, Chiang CY, Hu JW, Dostrovsky JO, Sessle BJ (2002) P2X receptors in trigeminal subnucleus caudalis modulate central sensitization in trigeminal subnucleus oralis. J Neurophysiol 88:1614–1624

    PubMed  CAS  Google Scholar 

  • Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1:683–692

    Article  PubMed  CAS  Google Scholar 

  • Kato J, Wakisaka S, Tabata MJ, Sasaki Y, Kurisu K (1994) Induction of Fos protein in the rat trigeminal nucleus complex during an experimental tooth movement. Arch Oral Biol 39:723–726

    Article  PubMed  CAS  Google Scholar 

  • Kawamoto S, Nagaoka E (2000) The effect of oestrogen deficiency on the alveolar bone resorption caused by traumatic occlusion. J Oral Rehabil 27:587–594

    Article  PubMed  CAS  Google Scholar 

  • Kulik A, Haentzsch A, Luckermann M, Reichelt W, Ballanyi K (1999) Neuron-glia signaling via alpha (1) adrenoceptor-mediated Ca(2+) release in Bergmann glial cells in situ. J Neurosci 19:8401–8408

    PubMed  CAS  Google Scholar 

  • Kvinnsland I, Heyeraas KJ (1992) Effect of traumatic occlusion on CGRP and SP immunoreactive nerve fibre morphology in rat molar pulp and periodontium. Histochemistry 97:111–120

    Article  PubMed  CAS  Google Scholar 

  • Kvinnsland S, Kristiansen AB, Kvinnsland I, Heyeraas KJ (1992) Effect of experimental traumatic occlusion on periodontal and pulpal blood flow. Acta Odontol Scand 50:211–219

    PubMed  CAS  Google Scholar 

  • Kvinnsland S, Kvinnsland I, Kristiansen AB (1993) Effect of experimental traumatic occlusion on blood flow in the temporomandibular joint of the rat. Acta Odontol Scand 51:293–298

    PubMed  CAS  Google Scholar 

  • Ledeboer A, Mahoney JH, Milligan ED, Martin D, Maier SF, Watkins LR (2006) Spinal cord glia and interleukin-1 do not appear to mediate persistent allodynia induced by intramuscular acidic saline in rats. J Pain 7:757–767

    Article  PubMed  CAS  Google Scholar 

  • Magdalena CM, Navarro VP, Park DM, Stuani MB, Rocha MJ (2004) C-fos expression in rat brain nuclei following incisor tooth movement. J Dent Res 83:50–54

    PubMed  CAS  Google Scholar 

  • Meller ST, Dykstra C, Grzybycki D, Murphy S, Gebhart GF (1994) The possible role of glia in nociceptive processing and hyperalgesia in the spinal cord of the rat. Neuropharmacology 33:1471–1478

    Article  PubMed  CAS  Google Scholar 

  • Pasti L, Volterra A, Pozzan T, Carmignoto G (1997) Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci 17:7817–7830

    PubMed  CAS  Google Scholar 

  • Porter JT, McCarthy KD (1996) Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J Neurosci 16:5073–5081

    PubMed  CAS  Google Scholar 

  • Salter MW (2005) Cellular signalling pathways of spinal pain neuroplasticity as targets for analgesic development. Curr Top Med Chem 5:557–567

    Article  PubMed  CAS  Google Scholar 

  • Saper CB (1995) The spinoparabrachial pathway: shedding new light on an old path. J Comp Neurol 353:477–479

    Article  PubMed  CAS  Google Scholar 

  • Sodeyama T, Maeda T, Takano Y, Hara K (1996) Responses of periodontal nerve terminals to experimentally induced occlusal trauma in rat molars: an immunohistochemical study using PGP 9.5 antibody. J Periodontal Res 31:235–248

    Article  PubMed  CAS  Google Scholar 

  • Storey E (1973) The nature of tooth movement. Am J Orthod 63:292–314

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW (1995) Mapping the human brain: past, present, and future. Trends Neurosci 18:471–474

    Article  PubMed  CAS  Google Scholar 

  • Waldo CM (1953) Method for the study of tissue response to tooth movement. J Dent Res 32:690–691

    Google Scholar 

  • Watkins LR, Maier SF (1999) Implications of immune-to-brain communication for sickness and pain. Proc Natl Acad Sci USA 96:7710–7713

    Article  PubMed  CAS  Google Scholar 

  • Watkins LR, Maier SF (2003) Glia: a novel drug discovery target for clinical pain. Nat Rev Drug Discov 2:973–985

    Article  PubMed  CAS  Google Scholar 

  • Watkins LR, Martin D, Ulrich P, Tracey KJ, Maier SF (1997) Evidence for the involvement of spinal cord glia in subcutaneous formalin induced hyperalgesia in the rat. Pain 71:225–235

    Article  PubMed  CAS  Google Scholar 

  • Willoughby JO, Mackenzie L, Broberg M, Thoren AE, Medvedev A, Sims NR, Nilsson M (2003) Fluorocitrate-mediated astroglial dysfunction causes seizures. J Neurosci Res 74:160–166

    Article  PubMed  CAS  Google Scholar 

  • Woda A, Molat JL, Luccarini P (2001) Low doses of N-methyl-D-aspartate antagonists in superficial laminae of medulla oblongata facilitate wind-up of convergent neurones. Neuroscience 107:317–327

    Article  PubMed  CAS  Google Scholar 

  • Xie YF, Zhang S, Chiang CY, Hu JW, Dostrovsky JO, Sessle BJ (2006) Involvement of glia in central sensitization in trigeminal subnucleus caudalis (medullary dorsal horn). Brain Behav Immun [Epub ahead of print]

  • Yamashiro T, Satoh K, Nakagawa K, Moriyama H, Yagi T, Takada K (1998) Expression of Fos in the rat forebrain following experimental tooth movement. J Dent Res 77:1920–1925

    Article  PubMed  CAS  Google Scholar 

  • Zhu ML, Liu HC, Hao ZQ, Duan LJ (2004) Expression of PN3 and NaN in trigeminal ganglion during occlusal trauma in rat. Zhonghua Kou Qiang Yi Xue Za Zhi 39:421–424

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Tracey Walmsley (UK) and Ms. Fan Peng (Fourth Military Medical University, Xi’an) for improving the English of the manuscript. We are also grateful to Xiao-Dong Liu, Jian-yong Qiu, Li Duan, Rong Cao, and Jin-jie Wang (Neuroscience Institute, Fourth Military Medical University, Xi’an) for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwu Chen.

Additional information

Jinwu Chen and Jun Zhang contributed equally to this study.

This study was supported by the National Nature Science Foundation of China (nos. 30400503 and 30572066).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Zhang, J., Zhao, Y. et al. Hyperalgesia in response to traumatic occlusion and GFAP expression in rat parabranchial nucleus: modulation with fluorocitrate. Cell Tissue Res 329, 231–237 (2007). https://doi.org/10.1007/s00441-007-0409-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0409-3

Keywords

Navigation