Skip to main content

Advertisement

Log in

Regeneration in Macrostomum lignano (Platyhelminthes): cellular dynamics in the neoblast stem cell system

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Neoblasts are potentially totipotent stem cells and the only proliferating cells in adult Platyhelminthes. We have examined the cellular dynamics of neoblasts during the posterior regeneration of Macrostomum lignano. Double-labeling of neoblasts with bromodeoxyuridine and the anti-phospho histone H3 mitosis marker has revealed a complex cellular response in the first 48 h after amputation; this response is different from that known to occur during regeneration in triclad platyhelminths and in starvation/feeding experiments in M. lignano. Mitotic activity is reduced during the first 8 h of regeneration but, at 48 h after amputation, reaches almost twice the value of control animals. The total number of S-phase cells significantly increases after 1 day of regeneration. A subpopulation of fast-cycling neoblasts surprisingly shows the same dynamics during regeneration as those in control animals. Wound healing and regeneration are accompanied by the formation of a distinct blastema. These results present new insights, at the cellular level, into the early regeneration of rhabditophoran Platyhelminthes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agata K (2003) Regeneration and gene regulation in planarians. Curr Opin Genet Dev 13:492–496

    Article  PubMed  CAS  Google Scholar 

  • Agata K, Watanabe K (1999) Molecular and cellular aspects of planarian regeneration. Semin Cell Dev Biol 10:377–383

    Article  PubMed  CAS  Google Scholar 

  • Baguñà J (1974) Dramatic mitotic response in planarians after feeding, and a hypothesis for the control mechanism. J Exp Zool 190:117–122

    Article  PubMed  Google Scholar 

  • Baguñà J (1976) Mitosis in the intact and regenerating planarian Dugesia mediterranea n. sp. II. Mitotic studies during regeneration, and a possible mechanism of blastema formation. J Exp Biol 195:65–80

    Google Scholar 

  • Baguñà J (1981) Planarian neoblasts. Nature 290:14–15

    Article  Google Scholar 

  • Baguñà J (1998) Planarians. In: Ferretti P, Geraudie J (eds) Cellular and molecular basis of regeneration: from invertebrates to human. Wiley, Chichester, pp 135–166

    Google Scholar 

  • Baguñà J, Riutort M (2004a) Molecular phylogeny of the Platyhelminthes. Can J Zool 82:168–193

    Article  Google Scholar 

  • Baguñà J, Riutort M (2004b) The dawn of bilaterian animals: the case of acoelomorph flatworms. BioEssays 26:1046–1057

    Article  PubMed  CAS  Google Scholar 

  • Baguñà J, Romero R (1981) Quantitative analysis of cell types during growth, degrowth and regeneration in the planarians Dugesia mediterranea and Dugesia tigrina. Hydrobiologia 84:181–194

    Article  Google Scholar 

  • Baguñà J, Saló E, Auladell C (1989) Regeneration and pattern formation in planarians. III. Evidence that neoblasts are totipotent stem cells and the source of blastema cells. Development 107:77–86

    Google Scholar 

  • Baguñà J, Romero R, Saló E, Collet J, Auladell C, Ribas M, Riutort M, Garcia-Fernandez J, Burgaya F, Bueno D (1990) Growth, degrowth and regeneration as developmental phenomena in adult freshwater planarians. In: Marthy HJ (ed) Experimental embryology in aquatic plants and animals. Plenum, New York, pp 129–162

    Google Scholar 

  • Baguñà J, Saló E, Romero R, Garcia-Fernandez J, Bueno D, Muñoz-Marmol AM, Bayascas-Ramirez JR, Casali A (1994) Regeneration and pattern formation in planarians: cells, molecules and genes. Zool Sci 11:781–795

    Google Scholar 

  • Best JB, Hand S, Rosenvold R (1968) Mitosis in normal and regenerating planarians. J Exp Biol 168:157–168

    CAS  Google Scholar 

  • Bode A, Salvenmoser W, Nimeth K, Mahlknecht M, Adamski Z, Rieger RM, Ladurner P (2006) The neoblast stem cells of Macrostomum sp. (Platyhelminthes): ultrastructure of immunogold labeled S-phase cells and non S-phase neoblasts, their numbers and distribution. Cell Tissue Res (in press)

  • Brøndsted H (1969) Planarian regeneration. Pergamon, Oxford London

    Google Scholar 

  • Carranza S, Baguñà J, Riutort M (1997) Are the Platyhelminthes a monophyletic primitive group? An assessment using 18S rDNA sequences. Mol Biol Evol 14:485–497

    PubMed  CAS  Google Scholar 

  • Cook CE, Jimenez E, Akam M, Saló E (2004) The Hox gene complement of acoel flatworms, a basal bilaterian clade. Evol Dev 6:154–163

    Article  PubMed  CAS  Google Scholar 

  • Drobysheva IM (1986) Physiological regeneration of the digestive parenchyma in Convoluta pulchra and Oxyposthia praedator (Turbellaria, Acoela). Cytometry 132:189–193

    Google Scholar 

  • Dubois F (1949) Contribution à l’étude de la migration des cellules de régénération chez les planaires dulcicoles. Bull Biol Fr Belg 83:213–283

    Google Scholar 

  • Egger B, Ladurner P, Nimeth K, Gschwentner R, Rieger R (2006a) The regeneration capacity of the flatworm Macrostomum lignano - on repeated regeneration, rejuvenation, and the minimal size needed for regeneration. Dev Genes Evol, DOI 10.1007/s00427-006-0069-4

  • Egger B, Ladurner P, Nimeth K, Gschwentner R, Rieger R (2006b) The regeneration capacity of the flatworm Macrostomum lignano - on repeated regeneration, rejuvenation, and the minimal size needed for regeneration. Dev Genes Evol, DOI 10.1007/s00427-006-0079-2 (erratum)

  • Ehlers U (1985) Das Phylogenetische System der Plathelminthes. Fischer, Stuttgart

    Google Scholar 

  • Gabriel A (1970) Etude morphologique et évolution biochimique des néoblastes au cours des premières phases de la régénération des planaires d´eau douce. Annls Embryol Morphogen 3:49–69

    CAS  Google Scholar 

  • Gremigni V, Miceli C (1980) Cytophotometric evidence for cell “transdifferentiation” in planarian regeneration. Arch Entwm 188:107–113

    Article  Google Scholar 

  • Gschwentner R, Ladurner P, Nimeth K, Rieger R (2001) Stem cells in a basal bilaterian. S-phase and mitotic cells in Convolutriloba longifissura (Acoela, Platyhelminthes). Cell Tissue Res 304:401–408

    Article  PubMed  CAS  Google Scholar 

  • Heidenhain M (1885)Eine neue Verwendung des Hämatoxylin. Archiv Mikrosk Anat 24:468–470

    Article  Google Scholar 

  • Hori I (1997) Cytological approach to morphogenesis in the planarian blastema. II. The effect of neuropeptides. J Submicrosc Cytol Pathol 29:91–97

    PubMed  CAS  Google Scholar 

  • Hori I, Kishida Y (1998) A fine-structural study of regeneration after fission in the planarian Dugesia japonica. Hydrobiologia 383:131–136

    Article  Google Scholar 

  • Hori I, Hikosaka-Katayama T, Kishida Y (1999) Cytological approach to morphogenesis in the planarian blastema. III. Ultrastructure and regeneration of the acoel turbellarian Convoluta naikaiensis. J Submicrosc Cytol Pathol 31:247–258

    Google Scholar 

  • Ito H, Saito Y, Watanabe K, Orii H (2001) Epimorphic regeneration of the distal part of the planarian pharynx. Dev Genes Evol 211:2–9

    Article  PubMed  CAS  Google Scholar 

  • Ladurner P, Rieger R (2000) Embryonic muscle development of Convoluta pulchra (Turbellaria-Acoelomorpha, Platyhelminthes). Dev Biol 222:359–375

    Article  PubMed  CAS  Google Scholar 

  • Ladurner P, Rieger R, Baguñà J (2000) Spatial distribution and differentiation potential of stem cells in hatchlings and adults in the marine platyhelminth Macrostomum sp.: a bromodeoxyuridine analysis. Dev Biol 226:231–241

    Article  PubMed  CAS  Google Scholar 

  • Lindh NO (1957) The mitotic activity during the early regeneration in Euplanaria polychroa. Arkiv Zool 10:497–509

    Google Scholar 

  • Mollenhauer HH (1964) Plastic embedding mixtures for use in electron microscopy. Stain Technol 39:111–114

    PubMed  CAS  Google Scholar 

  • Montgomery JR, Coward SJ (1974) On the minimal size of a planarian capable of regeneration. Trans Am Microsc Soc 93:386–391

    Article  PubMed  CAS  Google Scholar 

  • Moore J, Willmer P (1997) Convergent evolution in invertebrates. Biol Rev Cambridge Philos Soc 72:1–60

    Article  CAS  PubMed  Google Scholar 

  • Newmark PA, Sánchez Alvarado A (2000) Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev Biol 220:142–153

    Article  PubMed  CAS  Google Scholar 

  • Newmark PA, Sánchez Alvarado A (2002) Not your father’s planarian: a classic model enters the era of functional genomics. Nat Rev Genet 3:210–219

    Article  PubMed  CAS  Google Scholar 

  • Nimeth K, Ladurner P, Gschwentner R, Salvenmoser W, Rieger R (2002) Cell renewal and apoptosis in Macrostomum sp. (Lignano). Cell Biol Int 26:801–815

    Article  PubMed  CAS  Google Scholar 

  • Nimeth KT, Mahlknecht M, Mezzanato A, Peter R, Rieger R, Ladurner P (2004) Stem cell dynamics during growth, feeding and starvation in the basal flatworm Macrostomum sp. (Platyhelminthes). Dev Dyn 230:91–99

    Article  PubMed  Google Scholar 

  • Palmberg I (1986) Cell migration and differentiation during wound healing and regeneration in Microstomum lineare (Turbellaria). Hydrobiologia 132:181–188

    Article  Google Scholar 

  • Palmberg I (1990) Stem cells in microturbellarians: an autoradiographic and immunocytochemical study. Protoplasma 158:109–120

    Article  Google Scholar 

  • Pasquinelli AE, McCoy A, Jimenez E, Saló E, Ruvkun G, Martindale MQ, Baguñà J (2003) Expression of the 22 nucleotide let-7 heterochronic RNA throughout the Metazoa: a role in life history evolution? Evol Dev 5:372–378

    Article  PubMed  CAS  Google Scholar 

  • Peter R (2001) Experimentelle Systeme zum Studium von Regenerationsvorgängen: Turbellarien als Modellorganismen mit einem Stammzellensystem. Ber Nat-Med Verein Innsbruck 88:287–350

    Google Scholar 

  • Peter R, Ladurner P, Rieger RM (2001) The role of stem cell strategies in coping with environmental stress and choosing between alternative reproductive modes: Turbellaria rely on a single cell type to maintain individual life and propagate species. Mar Ecol PSZNI 22:35–51

    Article  Google Scholar 

  • Peter R, Gschwentner R, Schürmann W, Rieger RM, Ladurner P (2004) The significance of stem cells in free-living flatworms: one common source for all cells in the adult. J Appl Biomed 2:21–35

    Google Scholar 

  • Reddien PW, Oviedo NJ, Jennings JR, Jenkin JC, Sánchez Alvarado A (2005) SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science 310:1327–1330

    Article  PubMed  CAS  Google Scholar 

  • Reuter M, Kreshchenko N (2004) Flatworm asexual multiplication implicates stem cells and regeneration. Can J Zool 82:334–356

    Article  Google Scholar 

  • Rieger R (1996) Plathelminthes, Plattwürmer. In: Westheide W, Rieger R (eds) Spezielle Zoologie. I. Einzeller und Wirbellose Tiere. Fischer, Stuttgart, pp 210–258

    Google Scholar 

  • Rieger RM, Gehlen M, Haszprunar G, Holmlund M, Legniti A, Salvenmoser W, Tyler S (1988) Laboratory cultures of marine Macrostomida (Turbellaria). Forts Zool 36:525

    Google Scholar 

  • Rieger RM, Salvenmoser W, Legniti A, Tyler S (1994) Phalloidin-rhodamine preparations of Macrostomum hystricinum marinum (Plathelminthes): morphology and postembryonic development of the musculature. Zoomorphology 114:133–147

    Article  Google Scholar 

  • Rieger RM, Legniti A, Ladurner P, Reiter D, Asch E, Salvenmoser W, Schürmann W, Peter R (1999) Ultrastructure of neoblasts in microturbellaria: significance for understanding stem cells in free-living Platyhelminthes. Invertebr Repr Dev 35:127–140

    Google Scholar 

  • Saló E, Baguñà J (1984) Regeneration and pattern formation in planarians. I. The pattern of mitosis in anterior and posterior regeneration in Dugesia (G) tigrina, and a new proposal for blastema formation. J Embryol Exp Morphol 83:63–80

    PubMed  Google Scholar 

  • Saló E, Baguñà J (2002) Regeneration in planarians and other worms: new findings, new tools, and new perspectives. J Exp Zool 292:528–539

    Article  PubMed  Google Scholar 

  • Salvenmoser W, Riedl D, Ladurner P, Rieger R (2001) Early steps in the regeneration of the musculature in Macrostomum sp. (Macrostomorpha, Platyhelminthes). Belg J Zool 131 (Suppl 1):105–109

    Google Scholar 

  • Salvetti A, Batistoni R, Deri P, Rossi L, Sommerville J (1998) Expression of DjY1, a protein containing a cold shock domain and RG repeat motifs, is targeted to sites of regeneration in planarians. Dev Biol 201:217–229

    Article  PubMed  CAS  Google Scholar 

  • Salvetti A, Rossi L, Deri P, Batistoni R (2000) An MCM2-related gene is expressed in proliferating cells of intact and regenerating planarians. Dev Dyn 218:603–614

    Article  PubMed  CAS  Google Scholar 

  • Sánchez Alvarado A, Newmark PA, Robb SMC, Juste R (2002) The Schmidtea mediterranea database as a molecular resource for studying platyhelminthes, stem cells and regeneration. Development 129:5659–5665

    Article  PubMed  CAS  Google Scholar 

  • Telford MJ, Lockyer AE, Cartwright-Finch C, Littlewood DT (2003) Combined large and small subunit ribosomal RNA phylogenies support a basal position of the acoelomorph flatworms. Proc R Soc Lond [Biol] 270:1077–1083

    Article  CAS  Google Scholar 

  • Tyler S (1976) Comparative ultrastructure of adhesive systems in the Turbellaria. Zoomorphologie 84:1–76

    Google Scholar 

  • Tyler S (2001) The early worm: origins and relationship of the lower flatworms. In: Littlewood DTJ, Bray RA (eds) Interrelationships of the Platyhelminthes. Taylor & Francis, New York, pp 3–12

    Google Scholar 

Download references

Acknowledgements

We are grateful to Gunde Rieger for critical comments on earlier drafts of the manuscript and to Peter Ladurner for stimulating discussions. We thank Professor B. Pelster, Institute of Zoology and Limnology, Innsbruck, for allowing us to use his confocal microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Egger.

Additional information

This work was supported by FWF Grant (P16618; P.I. Rieger, Innsbruck).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nimeth, K.T., Egger, B., Rieger, R. et al. Regeneration in Macrostomum lignano (Platyhelminthes): cellular dynamics in the neoblast stem cell system. Cell Tissue Res 327, 637–646 (2007). https://doi.org/10.1007/s00441-006-0299-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0299-9

Keywords

Navigation