Skip to main content
Log in

Glycinergic transmission

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Inhibition in the mature central nervous system is mediated by activation of γ-aminobutyric acid (GABAA) and glycine receptors. Both receptors belong to the same superfamily of ligand-gated ion channels and share common transmembrane topology and structural and functional features. Glycine receptors are pentameric ligand-gated anion channels composed of two different subunits, named α und β, that assemble with a fixed stoichiometric ratio of two α to three β subunits. Four genes encoding the α subunits exist, whereas only one gene encoding the β subunit has been detected. Ligand binding occurs at the interface of α and β subunits. The β subunit, which is unable to form homo-oligomeric receptors, is responsible for assembly and channel properties. Moreover, this subunit carries a binding motif for the cytoplasmic protein gephyrin, which is believed to mediate synaptic clustering and anchoring at inhibitory synapses by interacting with the subsynaptic cytoskeleton. Synaptic gephyrin appears to restrict the mobility of glycine receptors diffusing in the plane of the plasma membrane, thereby generating dynamic plasma membrane domains contributing to the plasticity of inhibitory synapses. Glycine receptors are well established as playing important roles in controlling motor functions and sensory signaling in vision and audition and those in the dorsal horn of the spinal cord are now considered to be new targets for pain therapies. Like GABAA receptors, glycine receptors have been shown to be depolarizing during development. The functional meaning of the developmental switch from excitatory to inhibitory glycine receptor action remains to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becker CM, Hoch W, Betz H (1989) Primary cultures of mouse spinal cord express the neonatal isoform of the inhibitory glycine receptor. Neuron 3:339–348

    Article  PubMed  Google Scholar 

  • Ben-Ari Y (2002) Excitatory actions of GABA during development: the nature of nurture. Nat Rev Neurosci 3:728–739

    Article  PubMed  CAS  Google Scholar 

  • Betz H (1990) Ligand-gated ion channels in the brain: the amino acid receptor family. Neuron 5:383–392

    Article  PubMed  CAS  Google Scholar 

  • Betz H (1992) Structure and function of inhibitory glycine receptors. Q Rev Biophys 25:381–394

    Article  PubMed  CAS  Google Scholar 

  • Feng G, Tintrup H, Kirsch J, Nichol MC, Kuhse J, Betz H, Sanes JR (1998) Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science 282:1321–1324

    Article  PubMed  CAS  Google Scholar 

  • Flint AC, Liu X, Kriegstein AR (1998) Nonsynaptic glycine receptor activation during early neocortical development. Neuron 20:43–53

    Article  PubMed  CAS  Google Scholar 

  • Friauf E, Hammerschmidt B, Kirsch J (1997) Development of adult type glycine receptors in the central auditory system of rats. J Comp Neurol 385:117–134

    Article  PubMed  CAS  Google Scholar 

  • Giesemann T, Schwarz G, Nawrotzki R, Berhorster K, Rothkegel M, Schluter K, Schrader N, Schindelin H, Mendel RR, Kirsch J, Jockusch BM (2003) Complex formation between the postsynaptic scaffolding protein gephyrin, profilin, and Mena: a possible link to the microfilament system. J Neurosci 23:8330–8339

    PubMed  CAS  Google Scholar 

  • Graham BA, Schofield PR, Sah P, Margrie TW, Callister RJ (2006) Distinct physiological mechanisms underlie altered glycinergic synaptic transmission in the murine mutants spastic, spasmodic, and oscillator. J Neurosci 26:4880–4890

    Article  PubMed  CAS  Google Scholar 

  • Griffon N, Büttner C, Nicke A, Kuhse J, Schmalzing G, Betz H (1999) Molecular determinants of glycine receptor assembly. EMBO J 18:4711–4721

    Article  PubMed  CAS  Google Scholar 

  • Grudzinska J, Schemm R, Haeger S, Nicke A, Schmalzing G, Betz H, Laube B (2005) The β subunit determines the ligand binding properties of synaptic glycine receptors. Neuron 45:727–739

    Article  PubMed  CAS  Google Scholar 

  • Hanus C, Ehrensperger M-V, Triller A (2006) Activity-dependent movements of postsynaptic scaffolds at inhibitory synapses. J Neurosci 26:4586–4595

    Article  PubMed  CAS  Google Scholar 

  • Hartenstein B, Schenkel S, Kuhse J, Besenbeck B, Kling C, Becker CM, Betz H, Weiher H (1996) Low level expression of glycine receptor β subunit transgene is sufficient for phenotype correction in spastic mice. EMBO J 15:1275–1282

    PubMed  CAS  Google Scholar 

  • Harvey R, Depner U, Wässle H, Ahmadi S, Heindl C, Reinold H, Smart T, Harvey K, Schütz B, Akbari O, Zimmer A, Poisbeau P, Welzl H, Wolfer DP, Betz H, Zeilhofer U, Müller U (2004) GlyRalpha3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science 304:884–888

    Article  PubMed  CAS  Google Scholar 

  • Kingsmore SF, Giros B, Suh D, Bieniarz M, Caron G, Sedin MF (1994) Glycine receptor β subunit gene mutation in spastic mouse associated with LINE-1 element insertion. Nat Genet 7:136–142

    Article  PubMed  CAS  Google Scholar 

  • Kins S, Betz H, Kirsch J (2000) Collybistin, a newly identified brain-specific GEF, induces submembrane clustering of gephyrin. Nat Neurosci 3:22–29

    Article  PubMed  CAS  Google Scholar 

  • Kirsch J, Betz H (1995) The postsynaptic localization of the glycine receptor-associated protein gephyrin clusters is regulated by the cytoskeleton. J Neurosci 15:4148–4156

    PubMed  CAS  Google Scholar 

  • Kirsch J, Betz H (1998) Glycine receptor activation is required for receptor clustering in spinal cord neurons. Nature 392:717–720

    Article  PubMed  CAS  Google Scholar 

  • Kirsch J, Langosch D, Prior P, Littauer UZ, Schmitt B, Betz H (1991) The 93-kDa glycine receptor-associated protein binds to tubulin. J Biol Chem 266:22242–22245

    PubMed  CAS  Google Scholar 

  • Kirsch J, Wolters I, Triller A, Betz H (1993) Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons. Nature 366:745–748

    Article  PubMed  CAS  Google Scholar 

  • Kuhse J, Becker CM, Schmieden V, Hoch W, Pribilla I, Langosch D, Malosio ML, Muntz M, Betz H (1991a) Heterogeneity of the inhibitory glycine receptor. Ann N Y Acad Sci 625:129–135

    Article  PubMed  CAS  Google Scholar 

  • Kuhse J, Kuryatov A, Maulet Y, Malosio ML, Schmieden V, Betz H (1991b) Alternative splicing generates two isoforms of the α2 subunit of the inhibitory glycine receptor. FEBS Lett 283:73–77

    Article  PubMed  CAS  Google Scholar 

  • Kuhse J, Laube B, Magalei D, Betz H (1993) Assembly of the inhibitory glycine receptor: identification of amino acid sequence motifs governing subunit stoichiometry. Neuron 11:1049–1056

    Article  PubMed  CAS  Google Scholar 

  • Langosch D, Thomas L, Betz H (1988) Conserved quaternary structure of ligand-gated ion channels: the postsynaptic glycine receptor is a pentamer. Proc Natl Acad Sci USA 85:7394–7398

    Article  PubMed  CAS  Google Scholar 

  • Lasham A, Vreugdenhil E, Bateson AN, Barnard EA, Darlison MG (1991) Conserved organization of gamma-aminobutyric acidA receptor genes: cloning and analysis of the chicken beta 4-subunit gene. J Neurochem 57:352–355

    Article  PubMed  CAS  Google Scholar 

  • Legendre P (2001) The glycinergic inhibitory synapse. Cell Mol Life Sci 58:760–793

    Article  PubMed  CAS  Google Scholar 

  • Leite JF, Cascio M (2001) Structure of ligand-gated ion channels: critical assessment of biochemical data supports novel topology. Mol Cell Neurosci 17:777–792

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Corcuera B, Geerlings A, Aragon C (2001) Glycine neurotransmitter transporters: an update. Mol Membr Biol 18:13–20

    Article  PubMed  CAS  Google Scholar 

  • Malosio ML, Grenningloh G, Kuhse J, Schmieden V, Schmitt B, Prior P, Betz H (1991) Alternative splicing generates two variants of the a1 subunit of the inhibitory glycine receptor. J Biol Chem 266:2048–2053

    PubMed  CAS  Google Scholar 

  • Matzenbach B, Maulet Y, Sefton L, Courtier B, Avner P, Guénet JL, Betz H (1994) Structural analysis of mouse glycine receptor alpha subunit genes. J Biol Chem 269:2607–2612

    PubMed  CAS  Google Scholar 

  • Meier J, Granty R (2004) A gephyrin-related mechanism restraining glycine receptor anchoring at GABAergic synapses. J Neurosci 24:1398–1405

    Article  PubMed  CAS  Google Scholar 

  • Meier J, Meunier-Durmort C, Forest C, Triller A, Vannier C (2000) Formation of glycine receptor clusters and their accumulation at synapses. J Cell Sci 113:2783–2795

    PubMed  CAS  Google Scholar 

  • Meier J, Vannier C, Serge A, Triller A, Choquet D (2001) Fast and reversible trapping of surface glycine receptors by gephyrin. Nat Neurosci 4:253–260

    Article  PubMed  CAS  Google Scholar 

  • Meier J, Henneberger C, Melnick I, Racca C, Harvey R, Heinemann U, Schmieden V, Grantyn R (2005) RNA editing produces glycine receptor α3P185L, resulting in high agonist potency. Nat Neurosci 8:736–744

    Article  PubMed  CAS  Google Scholar 

  • Meyer G, Kirsch J, Betz H, Langosch D (1995) Identification of a gephyrin binding motif on the glycine receptor beta subunit. Neuron 15:563–572

    Article  PubMed  CAS  Google Scholar 

  • Mori M, Gähwiler B, Gerber U (2002) b-Alanine and taurine as endogenous agonists at glycine receptors in rat hippocampus in vitro. J Physiol (Lond) 539:191–200

    Article  CAS  Google Scholar 

  • Moss SJ, Smart TG (2001) Constructing inhibitory synapses. Nat Rev Neurosci 2:240–250

    Article  PubMed  CAS  Google Scholar 

  • Mühlhardt C, Fischer M, Gass P, Simon-Chazottes D, Guenet JL, Kuhse J, Betz H, Becker CM (1994) The spastic mouse: aberrant splicing of glycine receptor β subunit mRNA caused by intronic insertion of L1 element. Neuron 13:1003–1015

    Article  Google Scholar 

  • Pfeiffer F, Graham D, Betz H (1982) Purification by affinity chromatography of the glycine receptor of rat spinal cord. J Biol Chem 257:9389–9393

    PubMed  CAS  Google Scholar 

  • Prior P, Schmitt B, Grenningloh G, Pribilla I, Multhaup G, Beyreuther K, Maulet Y, Werner P, Langosch D, Kirsch J, Betz H (1992) Primary structure and alternative splice variants of gephyrin, a putative glycine receptor-tubulin linker protein. Neuron 8:1161–1170

    Article  PubMed  CAS  Google Scholar 

  • Ramming M, Kins S, Werner N, Hermann A, Betz H, Kirsch J (2000) Diversity and phylogeny of gephyrin: tissue-specific splice variants, gene structure, and sequence similarities to molybdenum cofactor-synthesizing and cytoskeleton-associated proteins. Proc Natl Acad Sci USA 97:10266–10271

    Article  PubMed  CAS  Google Scholar 

  • Rees MI, Andrew M, Jawad S, Qwen M (1994) Evidence for recessive as well as dominant forms of startle desease (hypereklexia) caused by mutations in the α1 subunit of the inhibitory glycine receptor. Hum Mol Genet 3:2174–2179

    Article  Google Scholar 

  • Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen HK, Lamsa K, Pirvola U, Saarma M, Kaila K (1999) The K+/Cl- co-trasnporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397:251–255

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Gomez A, Morato E, Garcia-Calvo M, Valdivieso F, Major F Jr (1990) Localization of the strychnine binding site on the 48-kilodalton subunit of the glycine receptor. Biochemistry 29:7033–7040

    Article  PubMed  CAS  Google Scholar 

  • Ryan SG, Buckwalter MS, Lynch JW, Handford CA, Segura L, Shiang R, Wasmuth JJ, Camper SA, Schofield P, O’Connel P (1994) A missense mutation in the gene encoding the α1 subunit of the inhibitory glycine receptor in the spasmodic mouse. Nat Genet 7:131–135

    Article  PubMed  CAS  Google Scholar 

  • Shiang R, Ryan SG, Zhu YZ, Hahn AF, O’Connel P, Wasmuth JJ (1993) Mutations in the α1 subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia. Nat Genet 5:351–357

    Article  PubMed  CAS  Google Scholar 

  • Sola M, Bavro VN, Timmins J, Franz T, Ricard-Blum S, Schoehn G, Ruigrok RWH, Paarmann I, Saiyed T, O’Sullivan GA, Schmitt B, Betz H, Weissenhorn W (2004) Structural basis of dynamic glycine receptor clustering by gephyrin. EMBO J 23:2510–2519

    Article  PubMed  CAS  Google Scholar 

  • Schmitt B, Knaus P, Becker CM, Betz H (1987) The Mr 93,000 polypeptide of the postsynaptic glycine receptor is a peripheral membrane protein. Biochem 26:805–811

    Article  CAS  Google Scholar 

  • Vandenberg, RJ, French CR, Barry PH, Shine J, Schofield PR (1992a) Antagonism of ligand-gated ion channel receptors: two domains of the glycine receptor α subunit form the strychnine-binding site. Proc Natl Acad Sci USA 89:1765–1769

    Article  PubMed  CAS  Google Scholar 

  • Vandenberg JR, Handford CA, Schofield PR (1992b) Distinct agonist- and antagonist-binding sites on the glycine receptor. Neuron 9:491–496

    Article  PubMed  CAS  Google Scholar 

  • Vitanova L, Haverkamp S, Wässle H (2004) Immunocytochemical localization of glycine and glycine receptors in the retina of the frog Rana ridibunda. Cell Tissue Res 317:227–235

    Article  PubMed  CAS  Google Scholar 

  • Zundert B van, Alvarez FJ, Tapia JC, Yeh HH, Diaz E, Aguayo LG (2004) Developmental-dependent action of microtubule depolymerization on the function and structure of synaptic glycine receptor clusters in spinal neurons. J Neurophysiol 91:1036–1049

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Kirsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirsch, J. Glycinergic transmission. Cell Tissue Res 326, 535–540 (2006). https://doi.org/10.1007/s00441-006-0261-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0261-x

Keywords

Navigation