Skip to main content

Advertisement

Log in

Gene expression of single articular chondrocytes

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Although previous studies in the field of tissue engineering have provided important information about articular cartilage, their conclusions are based on population averages and do not account for variations in cell subpopulations. To obtain a precise understanding of chondrocytes, we investigated the effects of cartilage zone and seeding duration on single chondrocyte gene expression to select an optimal zone for tissue engineering (Phase I), followed by an evaluation of growth factor exposure on the zone selected in Phase I (Phase II). In Phase I, superficial and middle/deep bovine articular chondrocytes were seeded in monolayers for 3 or 18 h. In Phase II, middle/deep chondrocytes (selected in Phase I) received 100 ng/ml insulin-like growth factor-I (IGF-I) for 3 h. Real-time reverse transcription/polymerase chain reaction was used to quantify the abundance of D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the relative abundances of aggrecan, collagens I and II, cartilage oligomeric matrix protein (COMP), matrix metalloproteinase-1 (MMP-1), and tissue inhibitor of metalloproteinase-1 (TIMP-1). GAPDH varied zonally, but neither time nor IGF-I had an effect on it, suggesting that GAPDH is a suitable housekeeping gene for comparisons within each zone, but not across zones. IGF-I increased the expression of aggrecan and collagen II in middle/deep chondrocytes seeded for 18 h. TIMP-1 expression increased with time in control cells, suggesting that chondrocytes enter a matrix protective state after seeding. IGF-I diminished this effect, suggesting that treatment with IGF-I refocuses chondrocytes on matrix production rather than on protection from metalloproteinases. Concomitant to increasing TIMP-1, MMP-1 was detectable by 18 h in superficial cells, providing further evidence of a trend toward matrix degradation with time. Collagen I was undetected in all cells, and no differences were observed for COMP, confirming that no dedifferentiation or osteoarthritic changes occurred. Taken together, these results establish a unique understanding of individual chondrocyte behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aida Y, Maeno M, Suzuki N, Shiratsuchi H, Motohashi M, Matsumura H (2005) The effect of IL-1beta on the expression of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in human chondrocytes. Life Sci 77:3210–3221

    Article  PubMed  CAS  Google Scholar 

  • Aydelotte MB, Kuettner KE (1988) Differences between sub-populations of cultured bovine articular chondrocytes. I. Morphology and cartilage matrix production. Connect Tissue Res 18:205–222

    PubMed  CAS  Google Scholar 

  • Aydelotte MB, Greenhill RR, Kuettner KE (1988) Differences between sub-populations of cultured bovine articular chondrocytes. II. Proteoglycan metabolism. Connect Tissue Res 18:223–234

    PubMed  CAS  Google Scholar 

  • Bengtsson M, Stahlberg A, Rorsman P, Kubista M (2005) Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels. Genome Res 15:1388–1392

    Article  PubMed  CAS  Google Scholar 

  • Bonassar LJ, Grodzinsky AJ, Srinivasan A, Davila SG, Trippel SB (2000) Mechanical and physicochemical regulation of the action of insulin-like growth factor-I on articular cartilage. Arch Biochem Biophys 379:57–63

    Article  PubMed  CAS  Google Scholar 

  • Bonassar LJ, Grodzinsky AJ, Frank EH, Davila SG, Bhaktav NR, Trippel SB (2001) The effect of dynamic compression on the response of articular cartilage to insulin-like growth factor-I. J Orthop Res 19:11–17

    Article  PubMed  CAS  Google Scholar 

  • Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193

    Article  PubMed  CAS  Google Scholar 

  • Darling EM, Athanasiou KA (2005a) Growth factor impact on articular cartilage subpopulations. Cell Tissue Res 322:463–473

    Article  PubMed  CAS  Google Scholar 

  • Darling EM, Athanasiou KA (2005b) Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J Orthop Res 23:425–432

    Article  PubMed  CAS  Google Scholar 

  • Darling EM, Hu JC, Athanasiou KA (2004) Zonal and topographical differences in articular cartilage gene expression. J Orthop Res 22:1182–1187

    Article  PubMed  CAS  Google Scholar 

  • De Mattei M, Pellati A, Pasello M, Ongaro A, Setti S, Massari L, Gemmati D, Caruso A (2004) Effects of physical stimulation with electromagnetic field and insulin growth factor-I treatment on proteoglycan synthesis of bovine articular cartilage. Osteoarthritis Cartilage 12:793–800

    Article  PubMed  Google Scholar 

  • Dheda K, Huggett JF, Chang JS, Kim LU, Bustin SA, Johnson MA, Rook GA, Zumla A (2005) The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Anal Biochem 344:141–143

    Article  PubMed  CAS  Google Scholar 

  • Dowthwaite GP, Bishop JC, Redman SN, Khan IM, Rooney P, Evans DJ, Haughton L, Bayram Z, Boyer S, Thomson B, Wolfe MS, Archer CW (2004) The surface of articular cartilage contains a progenitor cell population. J Cell Sci 117:889–897

    Article  PubMed  CAS  Google Scholar 

  • Gooch KJ, Blunk T, Courter DL, Sieminski AL, Bursac PM, Vunjak-Novakovic G, Freed LE (2001) IGF-I and mechanical environment interact to modulate engineered cartilage development. Biochem Biophys Res Commun 286:909–915

    Article  PubMed  CAS  Google Scholar 

  • Han SH, McCool BA, Murchison D, Nahm SS, Parrish AR, Griffith WH (2002) Single-cell RT-PCR detects shifts in mRNA expression profiles of basal forebrain neurons during aging. Brain Res Mol Brain Res 98:67–80

    Article  PubMed  CAS  Google Scholar 

  • Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6:279–284

    Article  PubMed  CAS  Google Scholar 

  • Jones WR, Ting-Beall HP, Lee GM, Kelley SS, Hochmuth RM, Guilak F (1999) Alterations in the Young’s modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. J Biomech 32:119–127

    Article  PubMed  CAS  Google Scholar 

  • Koay EJ, Shieh AC, Athanasiou KA (2003) Creep indentation of single cells. J Biomech Eng 125:334–341

    Article  PubMed  Google Scholar 

  • Lambolez F, Azogui O, Joret AM, Garcia C, Boehmer H von, Di Santo J, Ezine S, Rocha B (2002) Characterization of T cell differentiation in the murine gut. J Exp Med 195:437–449

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Fitzgerald JB, Dimicco MA, Grodzinsky AJ (2005) Mechanical injury of cartilage explants causes specific time-dependent changes in chondrocyte gene expression. Arthritis Rheum 52:2386–2395

    Article  PubMed  CAS  Google Scholar 

  • Leipzig ND, Athanasiou KA (2004) Cartilage regeneration. In: Wnek G, Bowlin G (eds) The encyclopedia of biomaterials and bioengineering. Dekker, New York, pp 283–291

    Google Scholar 

  • Leipzig ND, Athanasiou KA (2005) Unconfined creep compression of chondrocytes. J Biomech 38:77–85

    PubMed  Google Scholar 

  • Leipzig ND, Eleswarapu SV, Athanasiou KA (2006) The effects of TGF-beta1 and IGF-I on the biomechanics and cytoskeleton of single chondrocytes. Osteoarthritis Cartilage Jul 4 2006 (in press)

  • Mauck RL, Nicoll SB, Seyhan SL, Ateshian GA, Hung CT (2003) Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue Eng 9:597–611

    Article  PubMed  CAS  Google Scholar 

  • Mierisch CM, Anderson PC, Balian G, Diduch DR (2002) Treatment with insulin-like growth factor-1 increases chondrogenesis by periosteum in vitro. Connect Tissue Res 43:559–568

    PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  • Salminen H, Perala M, Lorenzo P, Saxne T, Heinegard D, Saamanen AM, Vuorio E (2000) Up-regulation of cartilage oligomeric matrix protein at the onset of articular cartilage degeneration in a transgenic mouse model of osteoarthritis. Arthritis Rheum 43:1742–1748

    Article  PubMed  CAS  Google Scholar 

  • Schinagl RM, Gurskis D, Chen AC, Sah RL (1997) Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J Orthop Res 15:499–506

    Article  PubMed  CAS  Google Scholar 

  • Schnabel M, Marlovits S, Eckhoff G, Fichtel I, Gotzen L, Vecsei V, Schlegel J (2002) Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthritis Cartilage 10:62–70

    Article  PubMed  CAS  Google Scholar 

  • Schumacher BL, Block JA, Schmid TM, Aydelotte MB, Kuettner KE (1994) A novel proteoglycan synthesized and secreted by chondrocytes of the superficial zone of articular cartilage. Arch Biochem Biophys 311:144–152

    Article  PubMed  CAS  Google Scholar 

  • Shakibaei M, John T, De Souza P, Rahmanzadeh R, Merker HJ (1999) Signal transduction by beta1 integrin receptors in human chondrocytes in vitro: collaboration with the insulin-like growth factor-I receptor. Biochem J 342:615–623

    Article  PubMed  CAS  Google Scholar 

  • Sharif M, Saxne T, Shepstone L, Kirwan JR, Elson CJ, Heinegard D, Dieppe PA (1995) Relationship between serum cartilage oligomeric matrix protein levels and disease progression in osteoarthritis of the knee joint. Br J Rheumatol 34:306–310

    PubMed  CAS  Google Scholar 

  • Shieh AC, Athanasiou KA (2002) Biomechanics of single chondrocytes and osteoarthritis. Crit Rev Biomed Eng 30:307–343

    Article  PubMed  Google Scholar 

  • Shieh AC, Athanasiou KA (2006) Biomechanics of single zonal chondrocytes. J Biomech 39:1595–1602

    Article  PubMed  Google Scholar 

  • Susante JL van, Buma P, Beuningen HM van, Berg WB van den, Veth RP (2000) Responsiveness of bovine chondrocytes to growth factors in medium with different serum concentrations. J Orthop Res 18:68–77

    Article  PubMed  Google Scholar 

  • Trickey WR, Baaijens FP, Laursen TA, Alexopoulos LG, Guilak F (2006) Determination of the Poisson’s ratio of the cell: recovery properties of chondrocytes after release from complete micropipette aspiration. J Biomech 39:78–87

    Article  PubMed  Google Scholar 

  • Wang L, Almqvist KF, Veys EM, Verbruggen G (2002) Control of extracellular matrix homeostasis of normal cartilage by a TGFbeta autocrine pathway. Validation of flow cytometry as a tool to study chondrocyte metabolism in vitro. Osteoarthritis Cartilage 10:188–198

    Article  PubMed  CAS  Google Scholar 

  • Wong M, Wuethrich P, Eggli P, Hunziker E (1996) Zone-specific cell biosynthetic activity in mature bovine articular cartilage: a new method using confocal microscopic stereology and quantitative autoradiography. J Orthop Res 14:424–432

    Article  PubMed  CAS  Google Scholar 

  • Wong M, Wuethrich P, Buschmann MD, Eggli P, Hunziker E (1997) Chondrocyte biosynthesis correlates with local tissue strain in statically compressed adult articular cartilage. J Orthop Res 15:189–196

    Article  PubMed  CAS  Google Scholar 

  • Yaeger PC, Masi TL, Ortiz JL de, Binette F, Tubo R, McPherson JM (1997) Synergistic action of transforming growth factor-beta and insulin-like growth factor-I induces expression of type II collagen and aggrecan genes in adult human articular chondrocytes. Exp Cell Res 237:318–325

    Article  PubMed  CAS  Google Scholar 

  • Zauscke F, Dinser R, Maurer P, Paulsson M (2001) Cartilage oligomeric matrix protein (COMP) and collagen IX are sensitive markers for the differentiation state of articular primary chondrocytes. Biochem J 358:17–24

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Adrian Shieh for his assistance and feedback during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyriacos A. Athanasiou.

Additional information

This research was supported by an Osteoarthritis Biomarkers Biomedical Science Grant from the Arthritis Foundation, National Institutes of Health Grant 5T32-GM008362 and by the Rice Undergraduate Scholars Program.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eleswarapu, S.V., Leipzig, N.D. & Athanasiou, K.A. Gene expression of single articular chondrocytes. Cell Tissue Res 327, 43–54 (2007). https://doi.org/10.1007/s00441-006-0258-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0258-5

Keywords

Navigation