Skip to main content
Log in

Identification, content, and distribution of type VI collagen in bovine tendons

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Tendon composition changes according to differentiation, mechanical load, and aging. In this study, we attempted to identify, localize, and quantify type VI collagen in bovine tendons. Type VI collagen was identified by the electrophoretic behavior of the alpha chains and Western blotting, and by rotary shadowing. Type VI collagen was extracted from powdered tendon with three sequential 24-h extractions with 4 M guanidine-HCl. The amount of type VI collagen was determined by enzyme-linked immunosorbent assay for purely tensional areas and for the compressive fibrocartilage regions of the deep flexor tendon of the digits, for the corresponding fetal and calf tendons, and for the extensor digital tendon. The distal fibrocartilaginous region of the adult tendon was richer in type VI collagen than the tensional area, reaching as much as 3.3 mg/g (0.33%) of the wet weight. Calf tendons showed an accumulation of type VI at the fibrocartilage site. Immunocytochemistry demonstrated that type VI collagen was evenly distributed in the tensional areas of tendons but was highly concentrated around the fibrochondrocytes in the fibrocartilages. The results demonstrate that tendons are variable with regard to the presence and distribution of type VI collagen. The early accumulation of type VI collagen in the region of calf tendon that will become fibrocartilage in the adult suggests that it is a good marker of fibrocartilage differentiation. Furthermore, the distribution of type VI collagen in tendon fibrocartilage indicates that it organizes the pericellular environment and may represent a survival factor for these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barlow GM, Chen XN, Shi ZY, Lyons GE, Kurnit DM, Celle L, Spinner NB, Zackai E, Pettenati MJ, Van Riper AJ, Vekemans MJ, Mjaatvedt CH, Korenberg JR (2001) Down syndrome congenital heart disease: a narrowed region and a candidate gene. Genet Med 3:91–101

    Article  PubMed  CAS  Google Scholar 

  • Batson EL, Paramour RJ, Smith TJ, Birch HL, Patterson-Kane JC, Goodship AE (2003) Are the material properties and matrix composition of equine flexor and extensor tendons determined by their functions? Equine Vet J 35:314–318

    Article  PubMed  CAS  Google Scholar 

  • Bonaldo P, Braghetta P, Zanetti M, Piccolo S, Volpin D, Bressan GM (1998) Collagen VI deficiency induces early onset myopathy in the mouse: an animal model for Bethlem myopathy. Hum Mol Genet 7:2135–2140

    Article  PubMed  CAS  Google Scholar 

  • Bruns RR, Press W, Engvall E, Timpl R, Gross J (1986) Type VI collagen in extracellular, 100-nm periodic filaments and fibrils: identification by immunoelectron microscopy. J Cell Biol 103:393–404

    Article  PubMed  CAS  Google Scholar 

  • Camacho-Vanegas O, Bertini E, Zhang RZ, Petrini S, Minosse C, Sabatelli P, Giusti, B, Chu ML, Pepe G (2001) Ullrich scleroatonic muscular dystrophy is caused by recessive mutations in collagen type VI. Proc Natl Acad Sci USA 98:7516–7521

    Article  PubMed  CAS  Google Scholar 

  • Carvalho HF, Vidal BC (1994a) Structure and histochemistry of a pressure-bearing tendon of the frog. Ann Anat 176:161–170

    PubMed  Google Scholar 

  • Carvalho HF, Vidal BC (1994b) The unique fibrillar arrangement of the bullfrog pressure-bearing tendon as an indicative of great functional deformability. Biol Cell 82:59–65

    PubMed  Google Scholar 

  • Covizi DZ, Felisbino SL, Gomes L, Pimentel ER, Carvalho HF (2001) Regional adaptations in three rat tendons. Tissue Cell 33:483–490

    Article  PubMed  CAS  Google Scholar 

  • Doane KJ, Howell SJ, Birk DE (1998) Identification and functional characterization of two type VI collagen receptors, alpha 3 beta 1 integrin and NG2, during avian corneal stromal development. Invest Ophthalmol Vis Sci 39:263–275

    PubMed  CAS  Google Scholar 

  • Evanko SP, Vogel KG (1990) Ultrastructure and proteoglycan composition in the developing fibrocartilaginous region of bovine tendon. Matrix 10:420–436

    PubMed  CAS  Google Scholar 

  • Evanko SP, Vogel KG (1993) Proteoglycan synthesis in fetal tendon is differentially regulated by cyclic compression in vitro. Arch Biochem Biophys 307:153–164

    Article  PubMed  CAS  Google Scholar 

  • Farndale RW, Buttle DJ, Barrett AJ (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883:173–177

    PubMed  CAS  Google Scholar 

  • Felisbino SL, Carvalho HF (1999) Identification and distribution of type VI collagen in tendon fibrocartilages. J Submicrosc Cytol Pathol 31:187–195

    PubMed  CAS  Google Scholar 

  • Gillard GC, Reilly HC, Bell-Booth PG, Flint MH (1979) The influence of mechanical forces on the glycosaminoglycan content of the rabbit flexor digitorum profundus tendon. Connect Tissue Res 7:37–46

    PubMed  CAS  Google Scholar 

  • Gittenberger-de Groot AC, Bartram U, Oosthoek PW, Bartelings MM, Hogers B, Poelmann RE, Jongewaard IN, Klewer SE (2003) Collagen type VI expression during cardiac development and in human fetuses with trisomy 21. Anat Rec 275A:1109–1116

    Article  Google Scholar 

  • Irwin WA, Bergamin N, Sabatelli P, Reggiani C, Megighian A, Merlini L, Braghetta P, Columbaro M, Volpin D, Bressan GM, Bonaldo P (2003) Mitochondrial dysfunction and apoptosis in myophatic mice with collagen VI deficiency. Nat Genet 35:367–371

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa H, Sugie K, Murayama K, Ito M, Minami N, Nishino I, Nonaka I (2002) Ullrich disease: collagen VI deficiency: EM suggests a new basis for muscular weakness. Neurology 59:920–923

    PubMed  CAS  Google Scholar 

  • Kielty CM, Cummings C, Whittaker SP, Shuttleworth CA, Grant ME (1991) Isolation and ultrastructural analysis of microfibrillar structures from foetal bovine elastic tissues. Relative abundance and supramolecular architecture of type VI collagen assemblies and fibrillin. J Cell Sci 99:797–807

    PubMed  CAS  Google Scholar 

  • Koob TJ, Clark PE, Hernandez DJ, Thurmond FA, Vogel KG (1992) Compression loading in vitro regulates proteoglycan synthesis by tendon fibrocartilage. Arch Biochem Biophys 298:303–312

    Article  PubMed  CAS  Google Scholar 

  • Loeser RF, Sadiev S, Tan L, Goldring MB (2000) Integrin expression by primary and immortalized human chondrocytes: evidence of a differential role for alpha1beta1 and alpha2beta1 integrins in mediating chondrocyte adhesion to types II and VI collagen. Osteoarthritis Cartilage 8:96–105

    Article  PubMed  CAS  Google Scholar 

  • Mercuri E, Yuva Y, Brown SC, Brockington M, Kinali M, Jungbluth H, Feng L, Sewry CA, Muntoni F (2002) Collagen VI involvement in Ullrich syndrome: a clinical, genetic, and immunohistochemical study. Neurology 58:1354–1359

    PubMed  CAS  Google Scholar 

  • Merrilees MJ, Flint MH (1980) Ultrastructural study of tension and pressure zones in a rabbit flexor tendon. Am J Anat 157:87–106

    Article  PubMed  CAS  Google Scholar 

  • Morris NP, Keene DR, Glanville RW, Bentz H, Burgeson RE (1986) The tissue form of type VII collagen is an antiparallel dimmer. J Biol Chem 261:5638–5644

    PubMed  CAS  Google Scholar 

  • Nurminskaya MV, Birk DE (1998) Differential expression of genes associated with collagen fibril growth in the chicken tendon: identification of structural and regulatory genes by subtractive hybridization. Arch Biochem Biophys 350:1–9

    Article  PubMed  CAS  Google Scholar 

  • Okuda Y, Gorski JP, An KN, Amadio PC (1987) Related Articles, Links Biochemical, histological, and biomechanical analyses of canine tendon. J Orthop Res 5:60–68

    Article  PubMed  CAS  Google Scholar 

  • Ritty TM, Roth R, Heuser JE (2003) Tendon cell array isolation reveals a previously unknown fibrillin-2-containing macromolecular assembly. Structure (Camb) 11:1179–1188

    Article  CAS  Google Scholar 

  • Robbins JR, Vogel KG (1994) Regional expression of mRNA for proteoglycans and collagen in tendon. Eur J Cell Biol 64:264–270

    PubMed  CAS  Google Scholar 

  • Rufai A, Benjamin M, Ralphs JR (1992) Development and ageing of phenotypically distinct fibrocartilages associated with the rat Achilles tendon. Anat Embryol (Berl) 186:611–618

    CAS  Google Scholar 

  • Scacheri PC, Gillanders EM, Subramony SH, Vedanarayanan V, Crowe CA, Thakore N, Bingler M, Hoffman EP (2002) Novel mutations in collagen VI genes: expansion of the Bethlem myopathy phenotype. Neurology 58:593–602

    PubMed  CAS  Google Scholar 

  • Senga K, Kobayashi M, Hattori H, Yasue K, Mizutani H, Ueda M, Hoshino T (1995) Type VI collagen in mouse masseter tendon, from osseous attachment to myotendinous junction. Anat Rec 243:294–302

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Ikari K, Furushima K, Okada A, Tanaka H, Furukawa K-I, Yoshida K, Ikeda T, Ikegawa S, Hunt SC, Takeda J, Toh S, Harata S, Nakajima T, Inoue I (2003) Genomewide linkage and linkage disequilibrium analyses identify COL6A1, on chromosome 21, as the locus for ossification of the posterior longitudinal ligament of the spine. Am J Hum Genet 73:812–822

    Article  PubMed  CAS  Google Scholar 

  • Timpl R, Chu M-L (1994) Microfibrillar collagen type VI. In: Yurchenco PD, Birk DE, Mecham RP (eds) Extracellular matrix assembly and structure. Academic Press, San Diego, pp 267–293

    Google Scholar 

  • Vogel KG (1996) The effect of compressive loading on proteoglycan turnover in cultured fetal tendon. Connect Tissue Res 34:227–237

    Article  PubMed  CAS  Google Scholar 

  • Vogel KG, Koob TJ (1989) Structural specialization in tendons under compression. Int Rev Cytol 115:267–293

    Article  PubMed  CAS  Google Scholar 

  • Vogel KG, Meyers AB (1999) Proteins in the tensile region of adult bovine deep flexor tendon. Clin Orthop 367 (Suppl):S344–S355

    Article  Google Scholar 

  • Vogel KG, Peters JA (2005) Histochemistry defines a proteoglycan-rich layer in bovine flexor tendon subjected to bending. J Mosculoskelet Neuronal Interact 5:64–69

    CAS  Google Scholar 

  • Vogel KG, Keller EJ, Lenhoff RJ, Campbell K, Koob TJ (1986) Proteoglycan synthesis by fibroblast cultures initiated from regions of adult bovine tendon subjected to different mechanical forces. Eur J Cell Biol 41:102–112

    PubMed  CAS  Google Scholar 

  • Watanabe M, Kobayashi M, Fujita Y, Senga K, Mizutani H, Ueda M, Hoshino T (1997) Association of type VI collagen with D-periodic collagen fibrils in developing tail tendons of mice. Arch Histol Cytol 60:427–434

    Article  Google Scholar 

  • Wiberg C, Klatt AR, Wagener R, Paulsson M, Bateman JF, Heinegard D, Morgelin M (2003) Complexes of matrilin-1 and biglycan or decorin connect collagen VI microfibrils to both collagen II and aggrecan. J Biol Chem 278:37698–37704

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Dr. Eva Engvall for donation of the antibodies. Some of this work was performed during H.F.C.′s stay in Albuquerque.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernandes F. Carvalho.

Additional information

This work was supported with funds from NIH/USA (to K.G.V.) and from FAPESP/São Paulo State, Brazil (to H.F.C.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvalho, H.F., Felisbino, S.L., Keene, D.R. et al. Identification, content, and distribution of type VI collagen in bovine tendons. Cell Tissue Res 325, 315–324 (2006). https://doi.org/10.1007/s00441-006-0161-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0161-0

Keywords

Navigation