Skip to main content

Advertisement

Log in

Movement of vault particles visualized by GFP-tagged major vault protein

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Vaults are abundant large ribonucleoprotein particles. They frequently colocalize with microtubules and accumulate in filamentous actin-rich lamellipodia. To examine the movement of vaults in living cells, a chimera between the green fluorescent protein and the major vault protein was created. This fusion protein assembled into vault particles as assayed by biochemical fractionation and direct observation of living or fixed cells. By fluorescence recovery after photobleaching, we analyzed the bulk transport of vault particles into neuritic tips of PC12 cells treated with nerve growth factor. Confocal laser scanning microscopy demonstrated co-localization of the major vault protein and microtubules. Video microscopy indicated that, whereas the majority of vault particles were stationary, some individual vault particles moved rapidly, consistent with the action of a microtubule-based or actin-based molecular motor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen RD, Metuzals J, Tasaki I, Brady ST, Gilbert SP (1982) Fast axonal transport in squid giant axon. Science 218:1127–1129

    Article  PubMed  CAS  Google Scholar 

  • Chugani DC, Rome LH, Kedersha NL (1993) Localization of vault particles to the nuclear pore complex. J Cell Sci 106:23–29

    PubMed  CAS  Google Scholar 

  • Chung J-H, Ginn-Pease ME, Eng C (2005) Phosphatase and tensin homologue deleted on chromosonme 10 (PTEN) has nuclear localization signal-like sequences for nuclear import mediated by major vault protein. Cancer Res 65:4108–4116

    Article  PubMed  CAS  Google Scholar 

  • Dalton WS, Scheper RJ (1999) Lung resistance-related protein: determining its role in multidrug resistance. J Nat Canc Inst 91:1604–1605

    Article  CAS  Google Scholar 

  • Eichenmüller B, Kedersha N, Solovyeva E, Everly P, Lang J, Himes RH, Suprenant KA (2003) Vaults bind directly to microtubules via their caps and not their barrels. Cell Motil Cytoskeleton 56:225–236

    Article  PubMed  Google Scholar 

  • Hamill DR, Suprenant KA (1997) Characterization of the sea urchin major vault protein: a possible role for vault ribonucleoprotein particles in nucleocytoplasmic transport. Dev Biol 190:117–128

    Article  PubMed  CAS  Google Scholar 

  • Hammerschlag R, Cyr JL, Brady ST (1994) Axonal transport and the neuronal cytoskeleton. In: Siegel GJ, et al (eds) Basic neurochemistry: molecular, cellular, and medical aspects. Raven, New York, pp 545–571

    Google Scholar 

  • Herrmann C, Volknandt W, Wittich B, Kellner R, Zimmermann H (1996) The major vault protein (MVP100) is contained in cholinergic nerve terminals of electric ray electric organ. J Biol Chem 271:13908–13915

    Article  PubMed  CAS  Google Scholar 

  • Herrmann C, Golkaramnay E, Inman E, Rome LH, Volknandt W (1999) Recombinant major vault protein is targeted to neuritic tips of PC12 cells. J Cell Biol 144:1163–1172

    Article  PubMed  CAS  Google Scholar 

  • Hosaka M, Hammer RE, Südhof TC (1999) A phospho-switch controls the dynamic association of synapsins with synaptic vesicles. Neuron 24:377–387

    Article  PubMed  CAS  Google Scholar 

  • Huffman KE, Corey DR (2005) Major vault protein does not play a role in chemoresistance or drug localization in a non-small cell lung cancer cell line. Biochemistry 44:2253–2261

    Article  PubMed  CAS  Google Scholar 

  • Kaether C, Skehel P, Dotti CG (2000) Axonal membrane proteins are transported in distinct carriers: a two-color video microscopy study in cultured hippocampal neurons. Mol Biol Cell 11:1213–1224

    PubMed  CAS  Google Scholar 

  • Kedersha NL, Rome LH (1986) Isolation and characterization of a novel ribonucleoprotein particle: large structures contain a single species of small RNA. J Cell Biol 103:699–709

    Article  PubMed  CAS  Google Scholar 

  • Kedersha NL, Rome LH (1990) Vaults: large cytoplasmic RNPs that associate with cytoskeletal elements. Mol Biol Rep 14:121–122

    Article  PubMed  CAS  Google Scholar 

  • Kedersha NL, Miquel MC, Bittner D, Rome LH (1990) Vaults. II Ribonucleoprotein structures are highly conserved among higher and lower eukaryotes. J Cell Biol 110:895–901

    Article  PubMed  CAS  Google Scholar 

  • Kedersha NL, Heuser JE, Chugani DC, Rome LH (1991) Vaults. III Vault ribonucleoprotein particles open into flower-like structures with octagonal symmetry. J Cell Biol 112:225–235

    Article  PubMed  CAS  Google Scholar 

  • Kickhoefer VA, Rome LH (1994) The sequence of a cDNA encoding the major vault protein from Rattus norvegicus. Gene 151:257–260

    Article  PubMed  CAS  Google Scholar 

  • Kickhoefer VA, Searles RP, Kedersha NL, Garber ME, Johnson DL, Rome LH (1993) Vault RNP particles from rat and bullfrog contain a related small RNA that is transcribed by RNA polymerase III. J Biol Chem 268:7868–78173

    PubMed  CAS  Google Scholar 

  • Kickhoefer VA, Vasu SK, Rome LH (1996) Vaults are the answer, what is the question? Trends Cell Biol 6:174–178

    Article  PubMed  CAS  Google Scholar 

  • Kickhoefer VA, Siva AC, Kedersha NL, Inman EM, Ruland C, Streuli M, Rome LH (1999a) The 193-kD vault protein, VPARP, is a novel poly(ADP-ribose) polymerase. J Cell Biol 146:917–928

    Article  PubMed  CAS  Google Scholar 

  • Kickhoefer VA, Stephen AG, Harrington L, Robinson MO, Rome LH (1999b) Vaults and telomerase share a common subunit, TEP1. J Biol Chem 274:32712–32718

    Article  PubMed  CAS  Google Scholar 

  • Kitazono M, Sumizawa T, Takebajashi Y, Chen ZS, Furokawa T, Nagayama S, Tani A, Takao S, Aikou T, Akiyama SI (1999) Multidrug resistance and the lung resistance-related protein in human colon carcinoma SW-620 cells. J Nat Canc Inst 91:1647–1653

    Article  CAS  Google Scholar 

  • Kitazono M, Okumura H, Ikeda R, Sumizawa T, Furukawa T, Nagayama S, Seto K, Aikou T, Akiyama SI (2001) Reversal of LRP-associated drug resistance in colon carcinoma SW-620 cells. Int J Cancer 91:126–131

    Article  PubMed  CAS  Google Scholar 

  • Kolli S, Zito CI, Mossink MH, Wiemer EAC (2004) The major vault protein is a novel substrate for the tyrosine phosphatase SHP-2 and scaffold protein in epidermal growth factor signaling. J Biol Chem 279:29374–29385

    Article  PubMed  CAS  Google Scholar 

  • Kong LB, Siva AC, Rome LH, Stewart PL (1999) Structure of the vault, a ubiquitious cellular component. Structure 7:371–379

    Article  PubMed  CAS  Google Scholar 

  • Kong LB, Siva AC, Kickhoefer VA, Rome LH, Stewart PL (2000) RNA location and modeling of a WD40 repeat domain within the vault. RNA 6:1–11

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Li JY, Volknandt W, Dahlström A, Herrmann C, Blasi J, Das B, Zimmermann H (1999) Axonal transport of ribonucleoprotein particles (vaults). Neuroscience 91:1055–1065

    Article  PubMed  CAS  Google Scholar 

  • Luby-Phelps K, Castle PE, Taylor DL, Lanni F (1987) Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells. Proc Natl Acad Sci USA 84:4910–4913

    Article  PubMed  CAS  Google Scholar 

  • Mossink MH, Van Zon A, Scheper RJ, Sonneveld P, Wiemer EAC (2003) Vaults: a ribonucleoprotein particle involved in drug resistance? Oncogene 22:7458–7467

    Article  PubMed  CAS  Google Scholar 

  • Rome LH, Kedersha N, Chugani D (1991) Unlocking vaults: organelles in search of a function. Trends Cell Biol 1:47–50

    Article  PubMed  CAS  Google Scholar 

  • Scheffer GL, Wijngaard PL, Flens MJ, Izquierdo MA, Slovak ML, Pinedo HM, Meijer CJ, Clevers HC, Scheper RJ (1995) The drug resistance-related protein LRP is the human major vault protein.Nat Med 1:578–582

    Article  PubMed  CAS  Google Scholar 

  • Slesina M, Inman EM, Rome LH, Volknandt W (2005) Nuclear localization of the major vault protein in U373 cells. Cell Tissue Res 321:97–104

    Article  PubMed  CAS  Google Scholar 

  • Stephen AG, Raval-Fernandez S, Huyn T, Torres M, Kickhoefer VA, Rome LH (2001) Assembly of vault-like particles in insect cells expressing only the major vault protein. J Biol Chem 276:23217–23220

    Article  PubMed  CAS  Google Scholar 

  • Suprenant KA (2002) Vault ribonucleoprotein particles: sarcophagi, gondolas, or safety deposit boxes? Biochemistry 41:14447–14454

    Article  PubMed  CAS  Google Scholar 

  • Vallee RB, Bloom GS (1991) Mechanisms of fast and slow axonal transport. Annu Rev Neurosci 14:59–92

    Article  PubMed  CAS  Google Scholar 

  • Van Zon A, Mossink MH, Scheper RJ, Sonneveld P, Wiemer EA (2003a) The vault complex. Cell Mol Life Sci 60:1828–1837

    Article  PubMed  Google Scholar 

  • Van Zon A, Mossink MH, Schoester M, Houtsmuller AB, Scheffer GL, Scheper RJ, Sonneveld P, Wiemer EA (2003b) The formation of vault-tubes: a dynamic interaction between vaults and vault PARP. J Cell Sci 116:4391–4400

    Article  PubMed  Google Scholar 

  • Van Zon A, Mossink MH, Schoester M, Scheper RJ, Sonneveld P, Wiemer EA (2003c) Efflux kinetics and intracellular distribution of daunorubicin are not affected by major vault protein/lung resitance-related protein (vault) expression. Cancer Res 64:4887–4892

    Article  Google Scholar 

  • Volknandt W, Herrmann C (1997) The major protein of a large ribonucleoprotein particle (VAULT) is localized in nerve terminals. In: Teelken AW, Korf J (eds) Neurochemistry: cellular, molecular, and clinical aspects. Plenum, London, pp 675–681

    Google Scholar 

  • Yi C, Li S, Chen X, Wiemer EAC, Wang J, Wei N, Deng XW (2005) Major vault protein, in concert with constitutively photomorphogenic 1, negatively regulates c-jun-mediated activator protein 1 transcription in mammalian cells. Cancer Res 65:5835–5840

    Article  PubMed  CAS  Google Scholar 

  • Yu Z, Fotouhi-Ardakani N, Wu L, Maoui M, Wang S, Banville D, Shen S-H (2003) PTEN associates with the vault particles in HeLa cells. J Biol Chem 277:40247–40252

    Article  Google Scholar 

  • Zheng C-L, Sumizawa T, Che X-F, Tsuyama S, Furukawa T, Haraguchi M, Gao H, Gotanda T, Jueng H-C, Murata F, Akiyama S-i (2004) Characterization of MVP and VPARP assembly into vaultribonucleoprotein complexes. Biochem Biophys Res Comm 325:100–107

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Valerie Kickhoefer and Prof. Herbert Zimmermann for reading the manuscript and making valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Volknandt.

Additional information

This work was supported by the United States Public Health Service, National Institutes of Health (grant GM38097 to L.H.R.) and by the North Atlantic Treaty Organization (grant CRG972834 to W.V.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slesina, M., Inman, E.M., Moore, A.E. et al. Movement of vault particles visualized by GFP-tagged major vault protein. Cell Tissue Res 324, 403–410 (2006). https://doi.org/10.1007/s00441-006-0158-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0158-8

Keywords

Navigation