Skip to main content

Advertisement

Log in

Loss of ovarian function and the risk of ovarian cancer

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Animal models with premature ovarian failure resulting from the loss or depletion of germ cells consistently develop ovarian surface epithelial cell hyperplasia with invasion into the stroma and the development of ovarian tubular adenomas. In human ovaries, deep epithelial invaginations and inclusion cysts occur at increasing frequency with age and are thought to be the structures from which the majority of ovarian cancers arise. A feature that is common to these animal models and to post-menopausal women is a deficiency in the number of oocytes. The potential consequences of the loss or depletion of female germ cells, naturally or otherwise, include failure of follicle development, significant reductions in oestrogen and progesterone levels and elevation of circulating levels of gonadotropins. This review will consider the way in which these structural and hormonal changes affect ovarian cancer risk. Some lessons may be learned from gonad formation, since notable similarities exist between ovarian tumorigenesis and embryonic gonadogenesis including fragmentation of the basement membrane underlying the coelomic (surface) epithelium, the potential for the migration of epithelial cells into the gonad and the importance of the germ cells for the regulation of ovarian structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adami HO, Hsieh CC, Lambe M, Trichopoulos D, Leon D, Persson I, Ekbom A, Janson PO (1994) Parity, age at first childbirth, and risk of ovarian cancer. Lancet 344:1250–1254

    Article  PubMed  Google Scholar 

  • Agoulnik IU, Tong XW, Fischer DC, Korner K, Atkinson NE, Edwards DP, Headon DR, Weigel NL, Kieback DG (2004) A germline variation in the progesterone receptor gene increases transcriptional activity and may modify ovarian cancer risk. J Clin Endocrinol Metab 89:6340–6347

    Article  PubMed  Google Scholar 

  • Auersperg N, Wong AS, Choi KC, Kang SK, Leung PC (2001) Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr Rev 22:255–288

    Article  PubMed  Google Scholar 

  • Biskind MS, Biskind GS (1944) Development of tumors in the rat ovary after transplantation into the spleen. Proc Soc Exp Biol Med 55:176–179

    Google Scholar 

  • Blaakaer J, Baeksted M, Micic S, Albrectsen P, Rygaard J, Bock J (1995) Gonadotropin-releasing hormone agonist suppression of ovarian tumorigenesis in mice of the Wx/Wv genotype. Biol Reprod 53:775–779

    Article  PubMed  Google Scholar 

  • Bukovsky A, Caudle MR, Svetlikova M, Upadhyaya NB (2004) Origin of germ cells and formation of new primary follicles in adult human ovaries. Reprod Biol Endocrinol 2:20

    Article  PubMed  Google Scholar 

  • Burmeister L, Healy DL (1998) Ovarian cancer in infertility patients. Ann Med 30:525–528

    PubMed  Google Scholar 

  • Cancer Surveillance On-Line Public Health Agency of Canada. http://dsol-smed.hc-sc.gc.ca/dsol-smed/cancer/index_e.html

  • Capen CC, Beamer WG, Tennent BJ, Stitzel KA (1995) Mechanisms of hormone-mediated carcinogenesis of the ovary in mice. Mutat Res 333:143–151

    PubMed  Google Scholar 

  • Capo-Chichi CD, Smith ER, Yang DH, Roland IH, Vanderveer L, Cohen C, Hamilton TC, Godwin AK, Xu XX (2002) Dynamic alterations of the extracellular environment of ovarian surface epithelial cells in premalignant transformation, tumorigenicity, and metastasis. Cancer 95:1802–1815

    Article  PubMed  Google Scholar 

  • Castrillon DH, Miao L, Kollipara R, Horner JW, DePinho RA (2003) Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science 301:215–218

    Article  PubMed  Google Scholar 

  • Celik C, Gezginc K, Aktan M, Acar A, Yaman ST, Gungor S, Akyurek C (2004) Effects of ovulation induction on ovarian morphology: an animal study. Int J Gynecol Cancer 14:600–606

    Article  PubMed  Google Scholar 

  • Chakravarti S, Collins WP, Forecast JD, Newton JR, Oram DH, Studd JW (1976) Hormonal profiles after the menopause. BMJ 2:784–787

    PubMed  Google Scholar 

  • Cho BN, McMullen ML, Pei L, Yates CJ, Mayo KE (2001) Reproductive deficiencies in transgenic mice expressing the rat inhibin alpha-subunit gene. Endocrinology 142:4994–5004

    Article  PubMed  Google Scholar 

  • Cramer DW, Welch WR (1983) Determinants of ovarian cancer risk: II. Inferences regarding pathogenesis. J Natl Cancer Inst 71:717–721

    PubMed  Google Scholar 

  • Danilovich N, Roy I, Sairam MR (2001) Ovarian pathology and high incidence of sex cord tumors in follitropin receptor knockout (FORKO) mice. Endocrinology 142:3673–3684

    Article  PubMed  Google Scholar 

  • Danilovich N, Maysinger D, Sairam MR (2004) Perspectives on reproductive senescence and biological aging: studies in genetically altered follitropin receptor knockout [FORKO] mice. Exp Gerontol 39:1669–1678

    Article  PubMed  Google Scholar 

  • Davies BR, Finnigan DS, Smith SK, Ponder BA (1999) Administration of gonadotropins stimulates proliferation of normal mouse ovarian surface epithelium. Gynecol Endocrinol 13:75–81

    PubMed  Google Scholar 

  • Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM (1996) Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383:531–535

    Article  PubMed  Google Scholar 

  • Dubeau L (1999) The cell of origin of ovarian epithelial tumors and the ovarian surface epithelium dogma: does the emperor have no clothes? Gynecol Oncol 72:437–442

    Article  PubMed  Google Scholar 

  • Duncan MK, Chada KK (1993) Incidence of tubulostromal adenoma of the ovary in aged germ cell-deficient mice. J Comp Pathol 109:13–19

    PubMed  Google Scholar 

  • Ishimura K, Matsuda H, Tatsumi H, Fujita H, Terada N, Kitamura Y (1986) Ultrastructural changes in the ovaries of Sl/Slt mutant mice, showing developmental deficiency of follicles and tubular adenomas. Arch Histol Jpn 49:379–389

    PubMed  Google Scholar 

  • Ivarsson K, Sundfeldt K, Brannstrom M, Janson PO (2001) Production of steroids by human ovarian surface epithelial cells in culture: possible role of progesterone as growth inhibitor. Gynecol Oncol 82:116–121

    Article  PubMed  Google Scholar 

  • Johnson J, Canning J, Kaneko T, Pru JK, Tilly JL (2004) Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature 428:145–150

    Article  PubMed  Google Scholar 

  • Kabawat SE, Bast RC Jr, Bhan AK, Welch WR, Knapp RC, Colvin RB (1983) Tissue distribution of a coelomic–epithelium-related antigen recognized by the monoclonal antibody OC125. Int J Gynecol Pathol 2:275–285

    PubMed  Google Scholar 

  • Karl J, Capel B (1998) Sertoli cells of the mouse testis originate from the coelomic epithelium. Dev Biol 203:323–333

    Article  PubMed  Google Scholar 

  • Keri RA, Lozada KL, Abdul-Karim FW, Nadeau JH, Nilson JH (2000) Luteinizing hormone induction of ovarian tumors: oligogenic differences between mouse strains dictates tumor disposition. Proc Natl Acad Sci USA 97:383–387

    Article  PubMed  Google Scholar 

  • Kirchner T, Brabletz T (2000) Patterning and nuclear beta-catenin expression in the colonic adenoma–carcinoma sequence: analogies with embryonic gastrulation. Am J Pathol 157:1113–1121

    PubMed  Google Scholar 

  • Kumar TR, Palapattu G, Wang P, Woodruff TK, Boime I, Byrne MC, Matzuk MM (1999) Transgenic models to study gonadotropin function: the role of follicle-stimulating hormone in gonadal growth and tumorigenesis. Mol Endocrinol 13:851–865

    PubMed  Google Scholar 

  • La Vecchia C, Franceschi S (1999) Oral contraceptives and ovarian cancer. Eur J Cancer Prev 8:297–304

    PubMed  Google Scholar 

  • Liebelt AG, Sass B, Lombard LS (1987) Mouse ovarian tumors—a review including classification and induction of neoplastic lesions and description of several previously unreported types. J Exp Pathol 3:115–145

    PubMed  Google Scholar 

  • Lubahn DB, Moyer JS, Golding TS, Couse JF, Korach KS, Smithies O (1993) Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc Natl Acad Sci USA 90:11162–11166

    PubMed  Google Scholar 

  • Matzuk MM, Finegold MJ, Su JG, Hsueh AJ, Bradley A (1992) Alpha-inhibin is a tumour-suppressor gene with gonadal specificity in mice. Nature 360:313–319

    PubMed  Google Scholar 

  • Matzuk MM, Burns KH, Viveiros MM, Eppig JJ (2002) Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science 296:2178–2180

    Article  PubMed  Google Scholar 

  • Mazaud S, Oreal E, Guigon CJ, Carre-Eusebe D, Magre S (2002) Lhx9 expression during gonadal morphogenesis as related to the state of cell differentiation. Gene Expr Patterns 2:373–377

    Article  PubMed  Google Scholar 

  • McMullen ML, Cho BN, Yates CJ, Mayo KE (2001) Gonadal pathologies in transgenic mice expressing the rat inhibin alpha-subunit. Endocrinology 142:5005–5014

    PubMed  Google Scholar 

  • Mintz B, Russel ES (1957) Gene-induced embryological modification of primordial germ cells in the mouse. J Exp Zool 134:207–237

    Article  PubMed  Google Scholar 

  • Murphy ED (1972) Hyperplastic and early neoplastic changes in the ovaries of mice after genic deletion of germ cells. J Natl Cancer Inst 48:1283–1295

    PubMed  Google Scholar 

  • Murphy ED, Beamer WG (1973) Plasma gonadotropin levels during early stages of ovarian tumorigenesis in mice of the Wx/Wv genotype. Cancer Res 33:721–723

    PubMed  Google Scholar 

  • Naora H, Montz FJ, Chai CY, Roden RB (2001) Aberrant expression of homeobox gene HOXA7 is associated with Mullerian-like differentiation of epithelial ovarian tumors and the generation of a specific autologous antibody response. Proc Natl Acad Sci USA 98:15209–15214

    Article  PubMed  Google Scholar 

  • Nishizuka Y, Sakakura T, Taguchi O (1979) Mechanism of ovarian tumorigenesis in mice after neonatal thymectomy. Natl Cancer Inst Monogr 51:89–96

    PubMed  Google Scholar 

  • Osterholzer HO, Johnson JH, Nicosia SV (1985) An autoradiographic study of rabbit ovarian surface epithelium before and after ovulation. Biol Reprod 33:729–738

    Article  PubMed  Google Scholar 

  • Rajkovic A, Pangas SA, Ballow D, Suzumori N, Matzuk MM (2004) NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science 305:1157–1159

    Article  PubMed  Google Scholar 

  • Risma KA, Clay CM, Nett TM, Wagner T, Yun J, Nilson JH (1995) Targeted overexpression of luteinizing hormone in transgenic mice leads to infertility, polycystic ovaries, and ovarian tumors. Proc Natl Acad Sci USA 92:1322–1326

    PubMed  Google Scholar 

  • Rodriguez GC, Walmer DK, Cline M, Krigman H, Lessey BA, Whitaker RS, Dodge R, Hughes CL (1998) Effect of progestin on the ovarian epithelium of macaques: cancer prevention through apoptosis? J Soc Gynecol Investig 5:271–276

    Article  PubMed  Google Scholar 

  • Roland IH, Yang WL, Yang DH, Daly MB, Ozols RF, Hamilton TC, Lynch HT, Godwin AK, Xu XX (2003) Loss of surface and cyst epithelial basement membranes and preneoplastic morphologic changes in prophylactic oophorectomies. Cancer 98:2607–2623

    PubMed  Google Scholar 

  • Salazar H, Godwin AK, Daly MB, Laub PB, Hogan WM, Rosenblum N, Boente MP, Lynch HT, Hamilton TC (1996) Microscopic benign and invasive malignant neoplasms and a cancer-prone phenotype in prophylactic oophorectomies. J Natl Cancer Inst 88:1810–1820

    PubMed  Google Scholar 

  • Scaglia H, Medina M, Pinto-Ferreira AL, Vazques G, Gual C, Perez-Palacios G (1976) Pituitary LH and FSH secretion and responsiveness in women of old age. Acta Endocrinol (Copenh) 81:673–679

    Google Scholar 

  • Schiffenbauer YS, Abramovitch R, Meir G, Nevo N, Holzinger M, Itin A, Keshet E, Neeman M (1997) Loss of ovarian function promotes angiogenesis in human ovarian carcinoma. Proc Natl Acad Sci USA 94:13203–13208

    Article  PubMed  Google Scholar 

  • Schmahl J, Eicher EM, Washburn LL, Capel B (2000) Sry induces cell proliferation in the mouse gonad. Development 127:65–73

    PubMed  Google Scholar 

  • Scully RE (1995) Pathology of ovarian cancer precursors. J Cell Biochem Suppl 23:208–218

    Article  PubMed  Google Scholar 

  • Sell A, Bertelsen K, Andersen JE, Stroyer I, Panduro J (1990) Randomized study of whole-abdomen irradiation versus pelvic irradiation plus cyclophosphamide in treatment of early ovarian cancer. Gynecol Oncol 37:367–373

    Article  PubMed  Google Scholar 

  • Steller M, Shaw TJ, Vanderhyden BC, Ethier J-F (2005) Inhibin resistance is associated with aggressive tumorigenicity of ovarian cancer cells. Mol Cancer Res 3:1–12

    PubMed  Google Scholar 

  • Stewart SL, Querec TD, Gruver BN, O’Hare B, Babb JS, Patriotis C (2004a) Gonadotropin and steroid hormones stimulate proliferation of the rat ovarian surface epithelium. J Cell Physiol 198:119–124

    PubMed  Google Scholar 

  • Stewart SL, Querec TD, Ochman AR, Gruver BN, Bao R, Babb JS, Wong TS, Koutroukides T, Pinnola AD, Klein-Szanto A, Hamilton TC, Patriotis C (2004b) Characterization of a carcinogenesis rat model of ovarian preneoplasia and neoplasia. Cancer Res 64:8177–8183

    PubMed  Google Scholar 

  • Stoica G, Koestner A, Capen CC (1985) Testicular (Sertoli’s cell)-like tumors of the ovary induced by N-ethyl-N-nitrosourea (ENU) in rats. Vet Pathol 22:483–491

    PubMed  Google Scholar 

  • Sundfeldt K, Piontkewitz Y, Ivarsson K, Nilsson O, Hellberg P, Brannstrom M, Janson PO, Enerback S, Hedin L (1997) E-cadherin expression in human epithelial ovarian cancer and normal ovary. Int J Cancer 74:275–280

    Article  PubMed  Google Scholar 

  • Teixeira Filho FL, Baracat EC, Lee TH, Suh CS, Matsui M, Chang RJ, Shimasaki S, Erickson GF (2002) Aberrant expression of growth differentiation factor-9 in oocytes of women with polycystic ovary syndrome. J Clin Endocrinol Metab 87:1337–1344

    Article  PubMed  Google Scholar 

  • Tennent BJ, Beamer WG (1986) Ovarian tumors not induced by irradiation and gonadotropins in hypogonadal (hpg) mice. Biol Reprod 34:751–760

    Article  PubMed  Google Scholar 

  • Tonary AM, Macdonald EA, Faught W, Senterman MK, Vanderhyden BC (2000) Lack of expression of c-KIT in ovarian cancers is associated with poor prognosis. Int J Cancer 89:242–250

    Article  PubMed  Google Scholar 

  • Vainio S, Heikkila M, Kispert A, Chin N, McMahon AP (1999) Female development in mammals is regulated by Wnt-4 signalling. Nature 397:405–409

    Article  PubMed  Google Scholar 

  • Vanderhyden BC (2002) Molecular basis of ovarian development and function. Front Biosci 7:2006–2022

    Google Scholar 

  • Vanderhyden BC, Caron PJ, Buccione R, Eppig JJ (1990) Developmental pattern of the secretion of cumulus expansion-enabling factor by mouse oocytes and the role of oocytes in promoting granulosa cell differentiation. Dev Biol 140:307–317

    Article  PubMed  Google Scholar 

  • Vanderhyden BC, Telfer EE, Eppig JJ (1992) Mouse oocytes promote proliferation of granulosa cells from preantral and antral follicles in vitro. Biol Reprod 46:1196–1204

    Article  PubMed  Google Scholar 

  • Vanderhyden BC, Shaw TJ, Ethier J-F (2003a) Animal models of ovarian cancer. Reprod Biol Endocrinol 1:67

    PubMed  Google Scholar 

  • Vanderhyden BC, Shaw TJ, Garson K, Tonary AM (2003b) Ovarian carcinogenesis. In: Leung PCK, Adashi EY (eds) The ovary, 2nd edn. Elsevier Academic, San Diego, pp 591–612

    Google Scholar 

  • Wang DP, Konishi I, Koshiyama M, Nanbu Y, Iwai T, Nonogaki H, Mori T, Fujii S (1992) Immunohistochemical localization of c-erbB-2 protein and epidermal growth factor receptor in normal surface epithelium, surface inclusion cysts, and common epithelial tumours of the ovary. Virchows Arch, A Pathol Anat Histopathol 421:393–400

    Google Scholar 

  • Whittemore AS, Harris R, Itnyre J (1992) Characteristics relating to ovarian cancer risk: collaborative analysis of 12 US case-control studies. IV. The pathogenesis of epithelial ovarian cancer. Collaborative Ovarian Cancer Group. Am J Epidemiol 136:1212–1220

    PubMed  Google Scholar 

  • Yao HH, DiNapoli L, Capel B (2003) Meiotic germ cells antagonize mesonephric cell migration and testis cord formation in mouse gonads. Development 130:5895–5902

    PubMed  Google Scholar 

  • Yao HH, Matzuk MM, Jorgez CJ, Menke DB, Page DC, Swain A, Capel B (2004) Follistatin operates downstream of Wnt4 in mammalian ovary organogenesis. Dev Dyn 230:210–215

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Dr. Douglas Gray for his critical review of this manuscript, Tanya Shaw for helpful discussions during its preparation, and Lisa Vandermeer and Dr. Jean-François Ethier for providing the micrographs in Figs. 1 and 2, respectively. The gdf9-deficient mice were generously provided by Dr. Martin Matzuk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara C. Vanderhyden.

Additional information

Research was supported by grants from the National Cancer Institute of Canada and the Canadian Institutes of Health Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanderhyden, B.C. Loss of ovarian function and the risk of ovarian cancer. Cell Tissue Res 322, 117–124 (2005). https://doi.org/10.1007/s00441-005-1100-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-1100-1

Keywords

Navigation