Skip to main content
Log in

Endothelia of term human placentae display diminished expression of tight junction proteins during preeclampsia

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

This study explores the molecular composition of the tight junction (TJ) in human term placenta from normal women and from patients with preeclampsia, a hypertensive disorder of pregnancy. Maternal endothelial dysfunction is a critical characteristic of preeclampsia; hence, we have analyzed its impact on placental vessels. The study concentrates on the TJ because this structure regulates the sealing of the paracellular route. We have found that, in placental endothelial vessels, TJ components include the peripheral protein ZO–1 and the integral proteins occludin and claudins 1, 3, and 5. During preeclampsia, the amounts of occludin and ZO–1 exhibit no significant variation, whereas those of claudins 1, 3, and 5 diminish, suggesting the presence of leakier TJs in the endothelia of the preeclamptic placenta, possibly in response to the decreased perfusion of this organ during preeclampsia. We have unexpectedly found that, in normal placentae, the multinucleated syncytiotrophoblast layer displays claudin 4 at the basal surface of the plasma membrane, and claudin 16 along the apical and basolateral surfaces. The presence of membrane-lined channels that cross the syncytiotrophoblast constituting a paracellular pathway has been determined by transmission electron microscopy and by the co-immunolocalization of claudin 16 with the plasma membrane proteins Na+K+-ATPase and GP135. Since claudin 16 functions as a paracellular channel for Mg2+, its diffuse pattern in preeclamptic placentae suggests the altered paracellular transport of Mg2+ between the maternal blood and the placental tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Acharya P, Beckel J, Ruiz WG, Wang E, Rojas R, Birder L, Apodaca G (2004) Distribution of the tight junction proteins ZO–1, occludin, and claudin–4, –8, and –12 in bladder epithelium. Am J Physiol Renal Physiol 287:F305–F318

    Article  PubMed  CAS  Google Scholar 

  • Adam B, Malatyalioglu E, Alvur M, Talu C (2001) Magnesium, zinc and iron levels in pre-eclampsia. J Matern Fetal Med 10:246–250

    Article  PubMed  CAS  Google Scholar 

  • Altman D, Carroli G, Duley L, Farrell B, Moodley J, Neilson J, Smith D (2002) Do women with pre-eclampsia, and their babies, benefit from magnesium sulphate? The Magpie Trial: a randomised placebo-controlled trial. Lancet 359:1877–1890

    Article  PubMed  Google Scholar 

  • Anderson JM, Cereijido M (2001) Evolution of ideas on the tight junction. In: Cereijido M, Anderson JM (eds) Tight junctions. CRC Press, Boca Raton, pp 1–18

    Google Scholar 

  • Balda MS, Garrett MD, Matter K (2003) The ZO–1–associated Y–box factor ZONAB regulates epithelial cell proliferation and cell density. J Cell Biol 160:423–432

    Article  PubMed  CAS  Google Scholar 

  • Balda MS, Whitney JA, Flores C, Gonzalez S, Cereijido M, Matter K (1996) Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J Cell Biol 134:1031–1049

    Article  PubMed  CAS  Google Scholar 

  • Bayer R (1990) Topological disposition of the sequences -QRKIVE- and -KETYY in native (Na+ + K+)-ATPase.Biochemistry 29:2251–2256

    Article  PubMed  CAS  Google Scholar 

  • Bazzoni G, Dejana E (2004) Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 84:869–901

    Article  PubMed  CAS  Google Scholar 

  • Belfort MA, Anthony J, Saade GR, Allen JC Jr (2003) A comparison of magnesium sulfate and nimodipine for the prevention of eclampsia. N Engl J Med 348:304–311

    Article  PubMed  CAS  Google Scholar 

  • Brosens IA, Robertson WB, Dixon HG (1972) The role of the spiral arteries in the pathogenesis of preeclampsia. Obstet Gynecol Annu 1:177–191

    PubMed  CAS  Google Scholar 

  • Cereijido M, Contreras RG, Gonzalez–Mariscal L (1989) Development and alteration of polarity. Annu Rev Physiol 51:785–795

    Article  PubMed  CAS  Google Scholar 

  • Colegio OR, Van Itallie C, Rahner C, Anderson JM (2003) Claudin extracellular domains determine paracellular charge selectivity and resistance but not tight junction fibril architecture. Am J Physiol Cell Physiol 284:C1346–C1354

    PubMed  CAS  Google Scholar 

  • Conradt A, Weidinger H, Algayer H (1984) On the role of magnesium in fetal hypotrophy, pregnancy induced hypertension and preeclampsia. Magnesium Bull 6:68–76

    Google Scholar 

  • Cotton DB, Hallak M, Janusz C, Irtenkauf SM, Berman RF (1993) Central anticonvulsant effects of magnesium sulfate on N-methyl-D-aspartate-induced seizures. Am J Obstet Gynecol 168:974–978

    PubMed  CAS  Google Scholar 

  • Eclampsia Trial Collaborative Group (1995) Which anticonvulsant for women with eclampsia? Evidence from the Collaborative Eclampsia Trial. Lancet 345:1455–1463

    Google Scholar 

  • Gonzalez–Mariscal L, Namorado MC, Martin D, Luna J, Alarcon L, Islas S, Valencia L, Muriel P, Ponce L, Reyes JL (2000) Tight junction proteins ZO–1, ZO–2, and occludin along isolated renal tubules. Kidney Int 57:2386–2402

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez–Mariscal L, Betanzos A, Nava P, Jaramillo BE (2003) Tight junction proteins. Prog Biophys Mol Biol 81:1–44

    Article  PubMed  CAS  Google Scholar 

  • Gottardi CJ, Arpin M, Fanning AS, Louvard D (1996) The junction-associated protein, zonula occludens–1, localizes to the nucleus before the maturation and during the remodeling of cell-cell contacts. Proc Natl Acad Sci USA 93:10779–10784

    Article  PubMed  CAS  Google Scholar 

  • Halhali A, Wimalawansa SJ, Berentsen V, Avila E, Thota CS, Larrea F (2001) Calcitonin gene- and parathyroid hormone-related peptides in preeclampsia: effects of magnesium sulfate. Obstet Gynecol 97:893–897

    Article  PubMed  CAS  Google Scholar 

  • Hallak M, Hotra JW, Custodio D, Kruger ML (2000) Magnesium prevents seizure-induced reduction in excitatory amino acid receptor (kainate and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) binding in pregnant rat brain. Am J Obstet Gynecol 183:793–798

    Article  PubMed  CAS  Google Scholar 

  • Hedley R, Bradbury MW (1980) Transport of polar non-electrolytes across the intact and perfused guinea-pig placenta. Placenta 1:277–285

    Article  PubMed  CAS  Google Scholar 

  • Islas S, Vega J, Ponce L, Gonzalez–Mariscal L (2002) Nuclear localization of the tight junction protein ZO–2 in epithelial cells. Exp Cell Res 274:138–148

    Article  PubMed  CAS  Google Scholar 

  • Jaramillo BE, Ponce A, Moreno J, Betanzos A, Huerta M, Lopez–Bayghen E, Gonzalez–Mariscal L (2004) Characterization of the tight junction protein ZO–2 localized at the nucleus of epithelial cells. Exp Cell Res 297:247–258

    Article  PubMed  CAS  Google Scholar 

  • Jee SH, Miller ER, III, Guallar E, Singh VK, Appel LJ, Klag MJ (2002) The effect of magnesium supplementation on blood pressure: a meta-analysis of randomized clinical trials. Am J Hypertens 15:691–696

    Article  PubMed  CAS  Google Scholar 

  • Kertschanska S, Kosanke G, Kaufmann P (1997) Pressure dependence of so-called transtrophoblastic channels during fetal perfusion of human placental villi. Microsc Res Tech 38:52–62

    Article  PubMed  CAS  Google Scholar 

  • Kertschanska S, Stulcova B, Kaufmann P, Stulc J (2000) Distensible transtrophoblastic channels in the rat placenta. Placenta 21:670–677

    Article  PubMed  CAS  Google Scholar 

  • Khong TY, De Wolf F, Robertson WB, Brosens I (1986) Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants. Br J Obstet Gynaecol 93:1049–1059

    PubMed  CAS  Google Scholar 

  • Kisters K, Korner J, Louwen F, Witteler R, Jackisch C, Zidek W, Ott S, Westermann G, Barenbrock M, Rahn KH (1998) Plasma and membrane Ca2+ and Mg2+ concentrations in normal pregnancy and in preeclampsia. Gynecol Obstet Invest 46:158–163

    Article  PubMed  CAS  Google Scholar 

  • Kisters K, Barenbrock M, Louwen F, Hausberg M, Rahn KH, Kosch M (2000) Membrane, intracellular, and plasma magnesium and calcium concentrations in preeclampsia. Am J Hypertens 13:765–769

    Article  PubMed  CAS  Google Scholar 

  • Kiuchi–Saishin Y, Gotoh S, Furuse M, Takasuga A, Tano Y, Tsukita S (2002) Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J Am Soc Nephrol 13:875–886

    PubMed  CAS  Google Scholar 

  • Leach L, Firth JA (1992) Fine structure of the paracellular junctions of terminal villous capillaries in the perfused human placenta. Cell Tissue Res 268:447–452

    Article  PubMed  CAS  Google Scholar 

  • Leach L, Lammiman MJ, Babawale MO, Hobson SA, Bromilou B, Lovat S, Simmonds MJ (2000) Molecular organization of tight and adherens junctions in the human placental vascular tree. Placenta 21:547–557

    Article  PubMed  CAS  Google Scholar 

  • Leach L, Babawale MO, Anderson M, Lammiman M (2002) Vasculogenesis, angiogenesis and the molecular organisation of endothelial junctions in the early human placenta. J Vasc Res 39:246–259

    Article  PubMed  CAS  Google Scholar 

  • McCarthy KM, Skare IB, Stankewich MC, Furuse M, Tsukita S, Rogers RA, Lynch RD, Schneeberger EE (1996) Occludin is a functional component of the tight junction. J Cell Sci 109:2287–2298

    PubMed  CAS  Google Scholar 

  • Mendoza–Rodriguez CA, Gonzalez–Mariscal L, Cerbon M (2005) Changes in the distribution of ZO–1, occludin, and claudins in the rat uterine epithelium during the estrous cycle. Cell Tissue Res 319:315–330

    Article  PubMed  CAS  Google Scholar 

  • Monnens L, Starremans P, Bindels R (2000) Great strides in the understanding of renal magnesium and calcium reabsorption. Nephrol Dial Transplant 15:568–571

    Article  PubMed  CAS  Google Scholar 

  • Morita K, Sasaki H, Furuse M, Tsukita S (1999) Endothelial claudin: claudin–5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol 147:185–194

    Article  PubMed  CAS  Google Scholar 

  • Morris CD, Jacobson SL, Anand R, Ewell MG, Hauth JC, Curet LB, Catalano PM, Sibai BM, Levine RJ (2001) Nutrient intake and hypertensive disorders of pregnancy: evidence from a large prospective cohort. Am J Obstet Gynecol 184:643–651

    Article  PubMed  CAS  Google Scholar 

  • Muhleisen H, Wolburg H, Betz E (1989) Freeze-fracture analysis of endothelial cell membranes in rabbit carotid arteries subjected to short-term atherogenic stimuli. Virchows Arch B Cell Pathol 56:413–417

    CAS  Google Scholar 

  • Muller D, Kausalya PJ, Claverie–Martin F, Meij IC, Eggert P, Garcia–Nieto V, Hunziker W (2003) A novel claudin 16 mutation associated with childhood hypercalciuria abolishes binding to ZO–1 and results in lysosomal mistargeting. Am J Hum Genet 73:1293–1301

    Article  PubMed  Google Scholar 

  • Newman PJ (1997) The biology of PECAM–1. J Clin Invest 99:3–8

    Article  PubMed  CAS  Google Scholar 

  • Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161:653–660

    Article  PubMed  CAS  Google Scholar 

  • Pridjian G, Puschett JB (2002) Preeclampsia. Part 2: experimental and genetic considerations. Obstet Gynecol Surv 57:619–640

    Article  PubMed  Google Scholar 

  • Quamme GA, de Rouffignac C (2000) Epithelial magnesium transport and regulation by the kidney. Front Biosci 5:D694–D711

    Article  PubMed  CAS  Google Scholar 

  • Rahner C, Mitic LL, Anderson JM (2001) Heterogeneity in expression and subcellular localization of claudins 2, 3, 4, and 5 in the rat liver, pancreas, and gut. Gastroenterology 120:411–422

    Article  PubMed  CAS  Google Scholar 

  • Redman CW (1991) Current topic: pre-eclampsia and the placenta. Placenta 12:301–308

    Article  PubMed  CAS  Google Scholar 

  • Reyes JL, Lamas M, Martin D, Carmen NM del, Islas S, Luna J, Tauc M, Gonzalez–Mariscal L (2002) The renal segmental distribution of claudins changes with development. Kidney Int 62:476–487

    Article  PubMed  CAS  Google Scholar 

  • Roberts JM (1989) Pregnancy related hypertension. In: Creasy RK, Resnik R (eds) Maternal fetal medicine: principles and practice, 2nd edn. Saunders, Philadelphia, pp 783–808

    Google Scholar 

  • Robillard PY, Hulsey TC, Perianin J, Janky E, Miri EH, Papiernik E (1994) Association of pregnancy-induced hypertension with duration of sexual cohabitation before conception. Lancet 344:973–975

    Article  PubMed  CAS  Google Scholar 

  • Robinson NR, Atkinson DE, Jones CJ, Sibley CP (1988) Permeability of the near-term rat placenta to hydrophilic solutes. Placenta 9:361–372

    Article  PubMed  CAS  Google Scholar 

  • Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, Noda T, Tsukita S (2000) Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 11:4131–4142

    PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Preparation and analysis of eukaryotic genomic DNA. In: Sambrook J, Russell DW (eds) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 6.1–6.64

    Google Scholar 

  • Sibai BM, Villar MA, Bray E (1989) Magnesium supplementation during pregnancy: a double-blind randomized controlled clinical trial. Am J Obstet Gynecol 161:115–119

    PubMed  CAS  Google Scholar 

  • Simionescu M, Simionescu N, Palade GE (1976) Segmental differentiations of cell junctions in the vascular endothelium. Arteries and veins. J Cell Biol 68:705–723

    Article  PubMed  CAS  Google Scholar 

  • Simon DB, Lu Y, Choate KA, Velazquez H, Al Sabban E, Praga M, Casari G, Bettinelli A, Colussi G, Rodriguez–Soriano J, McCredie D, Milford D, Sanjad S, Lifton RP (1999) Paracellin–1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285:103–106

    Article  PubMed  CAS  Google Scholar 

  • Soto–Wright V, Bernstein M, Goldstein DP, Berkowitz RS (1995) The changing clinical presentation of complete molar pregnancy. Obstet Gynecol 86:775–779

    Article  PubMed  CAS  Google Scholar 

  • Spatling L, Spatling G (1988) Magnesium supplementation in pregnancy. A double-blind study. Br J Obstet Gynaecol 95:120–125

    PubMed  CAS  Google Scholar 

  • Standley CA, Whitty JE, Mason BA, Cotton DB (1997) Serum ionized magnesium levels in normal and preeclamptic gestation. Obstet Gynecol 89:24–27

    Article  PubMed  CAS  Google Scholar 

  • Standley PR, Standley CA (2002) Identification of a functional Na+/Mg2+ exchanger in human trophoblast cells. Am J Hypertens 15:565–570

    Article  PubMed  CAS  Google Scholar 

  • Stulc J (1989a) Extracellular transport pathways in the haemochorial placenta. Placenta 10:113–119

    Article  PubMed  CAS  Google Scholar 

  • Stulc J (1989b) Study of the permeability of the intact guinea pig placenta to hydrophilic molecules. Placenta 10:427–428

    Article  PubMed  CAS  Google Scholar 

  • Stulc J, Stulcova B (1986) Transport of calcium by the placenta of the rat. J Physiol (Lond) 371:1–16

    CAS  Google Scholar 

  • Stulc J, Friedrich R, Jiricka Z (1969) Estimation of the equivalent pore dimensions in the rabbit placenta. Life Sci 8:167–180

    Article  PubMed  CAS  Google Scholar 

  • Thornburg KL, Faber JJ (1977) Transfer of hydrophilic molecules by placenta and yolk sac of the guinea pig. Am J Physiol 233:C111–C124

    PubMed  CAS  Google Scholar 

  • Tsukita S, Furuse M (1999) Occludin and claudins in tight-junction strands: leading or supporting players? Trends Cell Biol 9:268–273

    Article  PubMed  CAS  Google Scholar 

  • Tsukita S, Furuse M (2000) Pores in the wall: claudins constitute tight junction strands containing aqueous pores. J Cell Biol 149:13–16

    Article  PubMed  CAS  Google Scholar 

  • Van Itallie C, Rahner C, Anderson JM (2001) Regulated expression of claudin–4 decreases paracellular conductance through a selective decrease in sodium permeability. J Clin Invest 107:1319–1327

    Article  PubMed  Google Scholar 

  • Wolburg H, Wolburg–Buchholz K, Kraus J, Rascher–Eggstein G, Liebner S, Hamm S, Duffner F, Grote EH, Risau W, Engelhardt B (2003) Localization of claudin–3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol (Berl) 105:586–592

    CAS  Google Scholar 

  • Wong V, Goodenough DA (1999) Paracellular channels! Science 285:62

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Damsky CH, Chiu K, Roberts JM, Fisher SJ (1993) Preeclampsia is associated with abnormal expression of adhesion molecules by invasive cytotrophoblasts. J Clin Invest 91:950–960

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Damsky CH, Fisher SJ (1997a) Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype. One cause of defective endovascular invasion in this syndrome? J Clin Invest 99:2152–2164

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Fisher SJ, Janatpour M, Genbacev O, Dejana E, Wheelock M, Damsky CH (1997b) Human cytotrophoblasts adopt a vascular phenotype as they differentiate. A strategy for successful endovascular invasion? J Clin Invest 99:2139–2151

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Dr. Oscar Arturo Martinez Rodriguez, Director of the Gynecological Hospital of La Raza Medical Center-IMSS in Mexico City, for his help in obtaining the placentae. This work was submitted in partial fulfilment of the requirements for the PhD degree awarded to Samuel Liévano (Doctorate in Biomedical Science of the National Autonomous University of Mexico; UNAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenza González–Mariscal.

Additional information

This work was supported by grants 45691-Q from the Mexican Council for Science and Technology (CONACYT) and 2005/1/I/012 from the Research Promotion Fund of the Mexican Institute of Social Security (IMSS/FOFOI).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liévano, S., Alarcón, L., Chávez–Munguía, B. et al. Endothelia of term human placentae display diminished expression of tight junction proteins during preeclampsia. Cell Tissue Res 324, 433–448 (2006). https://doi.org/10.1007/s00441-005-0135-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-0135-7

Keywords

Navigation