Skip to main content
Log in

Myosin flares and actin leptomeres as myofibril assembly/disassembly intermediates in sonic muscle fibers

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The sonic muscle of type 1 male midshipman fish produces loud and enduring mating calls. Each sonic muscle fiber contains a tubular contractile apparatus with radially arranged myofibrillar plates encased in a desmin-rich cytoskeleton that is anchored to broad Z bands (~1.2 μm wide). Immunomicroscopy has revealed patches of myosin-rich “flares” emanating from the contractile tubes into the peripheral sarcoplasm along the length of the fibers. These flares contain swirls of thick filaments devoid of associated thin filaments. In other regions of the sarcoplasm at the inner surface of the sarcolemma and near Z bands, abundant ladder-like leptomeres occur with rungs every 160 nm. Leptomeres consist of dense arrays of filaments (~4 nm) with a structure that resembles myofibrillar Z band structure. We propose that flares and leptomeres are distinct filamentous arrays representing site-specific processing of myofibrillar components during the assembly and disassembly of the sarcomere. Recent reports that myosin assembles into filamentous aggregates before incorporating into the A band in the skeletal muscles of vertebrates and Caenorhabditis elegans suggest that sonic fibers utilize a similar pathway. Thus, sonic muscle fibers, with their tubular design and abundant sarcoplasmic space, may provide an attractive muscle model to identify myofibrillar intermediates by structural and molecular techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Auerbach D, Bantle S, Keller S, Hinderling V, Leu M, Ehler E, Perriard JC (1999) Different domains of the M-band protein myomesin are involved in myosin binding and M-band targeting. Mol Biol Cell 10:1297-1308

    PubMed  CAS  Google Scholar 

  • Bader D, Masaki T, Fischman DA (1982) Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. J Cell Biol 95:763–770

    Article  PubMed  CAS  Google Scholar 

  • Bass AH (1989) Evolution of vertebrate motor systems for acoustic and electric communication: peripheral and central elements. Brain Behav Evol 33:237–247

    Article  PubMed  CAS  Google Scholar 

  • Bass AH, Baker R (1990) Sexual dimorphisms in the vocal control system of a teleost fish: morphology of physiologically identified neurons. J Neurobiol 21:1155–1168

    Article  PubMed  CAS  Google Scholar 

  • Bass AH, Marchaterre MA (1989) Sound–generating (sonic) motor system in a teleost fish (Porichthys notatus)—sexual polymorphism in the ultrastructure of myofibrils. J Comp Neurol 286:141–153

    Article  PubMed  CAS  Google Scholar 

  • Benian GM, Tinley TL, Tang X, Borodovsky M (1996) The Caenorhabditis elegans gene unc–89, required for muscle M–line assembly, encodes a giant modular protein composed of Ig and signal transduction domains. J Cell Biol 132:835–848

    Article  PubMed  CAS  Google Scholar 

  • Bogusch G (1975) Electron microscopic investigations on leptomeric fibrils and leptomeric complexes in the hen and pigeon heart. J Mol Cell Cardiol 7:733–745

    Article  PubMed  CAS  Google Scholar 

  • Brantley RK, Marchaterre MA, Bass AH (1993a) Androgen effects on vocal muscle structure in a teleost fish with inter– and intra–sexual dimorphism. J Morphol 216:305–318

    Article  PubMed  CAS  Google Scholar 

  • Brantley RK, Tseng J, Bass AH (1993b) The ontogeny of inter– and intrasexual vocal muscle dimorphisms in a sound-producing fish. Brain Behav Evol 42:336–349

    Article  PubMed  CAS  Google Scholar 

  • Brantley RK, Wingfield JC, Bass AH (1993c) Sex steroid levels in Porichthys notatus, a fish with alternative reproductive tactics, and a review of the hormonal bases for male dimorphism among teleost fishes. Horm Behav 27:332–347

    Article  PubMed  CAS  Google Scholar 

  • Du A, Sanger JM, Linask KK, Sanger JW (2003) Myofibrillogenesis in the first cardiomyocytes formed from isolated quail precardiac mesoderm. Dev Biol 257:382–394

    Article  PubMed  CAS  Google Scholar 

  • Ehler E, Rothen BM, Hammerle SP, Komiyama M, Perriard JC (1999) Myofibrillogenesis in the developing chicken heart: assembly of Z–disk, M–line and the thick filaments. J Cell Sci 112:1529–1539

    PubMed  CAS  Google Scholar 

  • Harris AJ, Duxson MJ, Fitzsimons RB, Rieger F (1989) Myonuclear birthdates distinguish the origins of primary and secondary myotubes in embryonic mammalian skeletal muscles. Development 107:771–784

    PubMed  CAS  Google Scholar 

  • Hill CS, Duran S, Lin ZX, Weber K, Holtzer H (1986) Titin and myosin, but not desmin, are linked during myofibrillogenesis in postmitotic mononucleated myoblasts. J Cell Biol 103:2185–2196

    Article  PubMed  CAS  Google Scholar 

  • Holtzer H, Hijikata T, Lin ZX, Zhang ZQ, Holtzer S, Protasi F, Franzini–Armstrong C, Sweeney HL (1997) Independent assembly of 1.6 microns long bipolar MHC filaments and I–Z–I bodies. Cell Struct Funct 22:83–93

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa T, Okada T, Kobayashi T, Hashimoto K, Seguchi H (1994) Ultrastructural and immunocytochemical study of the leptomeres in the mouse cardiac muscle fibre. Histol Histopathol 9:85–94

    PubMed  CAS  Google Scholar 

  • Ibara RM, Penny LT, Ebeling AW, Dykhuizen G van, Cailliet G (1983) The mating call of the plainfin midshipman fish, Porichthys notatus. In: Noakes DGL, Lindquist DG, Helfman GS, Ward JA (eds) Predators and prey in fishes. Junk, The Hague, pp 205-212

    Google Scholar 

  • Karlsson U, Andersson-Cedergren E (1968) Small leptomeric organelles in intrafusal muscle fibers of the frog as revealed by electron microscopy. J Ultrastruct Res 23:417–426

    Article  PubMed  CAS  Google Scholar 

  • Katz B (1961) The terminations of the afferent nerve fiber in the muscle spindle of the frog. Philos Trans R Soc Lond B 243:221–240

    Article  Google Scholar 

  • Kelly AM, Zacks SI (1969) The histogenesis of rat intercostal muscle. J Cell Biol 42:135–153

    Article  PubMed  CAS  Google Scholar 

  • Knapp R, Wingfield JC, Bass AH (1999) Steroid hormones and paternal care in the plainfin midshipman fish (Porichthys notatus). Horm Behav 35:81–89

    Article  PubMed  Google Scholar 

  • Lewis MK, Nahirney PC, Chen V, Adhikari BB, Wright J, Reedy MK, Bass AH, Wang K (2003) Concentric intermediate filament lattice links to specialized Z–band junctional complexes in sonic muscle fibers of the type I male midshipman fish. J Struct Biol 143:56–71

    Article  PubMed  CAS  Google Scholar 

  • Lindholm MM, Bass AH (1993) Early events in myofibrillogenesis and innervation of skeletal, sound–generating muscle in a teleost fish. J Morphol 216:225–239

    Article  PubMed  CAS  Google Scholar 

  • Martinez AJ, Hay S, McNeer KW (1976) Extraocular muscles: light microscopy and ultrastructural features. Acta Neuropathol (Berl) 34:237–253

    Article  CAS  Google Scholar 

  • Miller JB, Crow MT, Stockdale FE (1985) Slow and fast myosin heavy chain content defines three types of myotubes in early muscle cell cultures. J Cell Biol 101:1643–1650

    Article  PubMed  CAS  Google Scholar 

  • Moncman CL, Rindt H, Robbins J, Winkelmann DA (1993) Segregated assembly of muscle myosin expressed in nonmuscle cells. Mol Biol Cell 4:1051–1067

    PubMed  CAS  Google Scholar 

  • Mukuno K (1966) The fine structures of the human extraocular muscles. (1). A laminated structure in muscle fibers. J Electr Microsc 15:227–236

    CAS  Google Scholar 

  • Oliphant LW, Loewen RD (1976) Filament systems in Purkinje cells of the sheep heart: possible alterations of myofibrillogenesis. J Mol Cell Cardiol 8:679–688

    Article  CAS  Google Scholar 

  • Ono S (2001) The Caenorhabditis elegans unc–78 gene encodes a homologue of actin-interacting protein 1 required for organized assembly of muscle actin filaments. J Cell Biol 152:1313–1319

    Article  PubMed  CAS  Google Scholar 

  • Ono S, Benian GM (1998) Two Caenorhabditis elegans actin depolymerizing factor/cofilin proteins, encoded by the unc–60 gene, differentially regulate actin filament dynamics. J Biol Chem 273:3778–3783

    Article  PubMed  CAS  Google Scholar 

  • Ono S, Baillie DL, Benian GM (1999) UNC–60B, an ADF/cofilin family protein, is required for proper assembly of actin into myofibrils in Caenorhabditis elegans body wall muscle. J Cell Biol 145:491–502

    Article  PubMed  CAS  Google Scholar 

  • Ono T, Yamamoto N, Yasuda K (1978) Fine structure of the "leptomere myofibrils" in the cardiac muscle of the mouse. Okajimas Folia Anat Jpn 55:69–92

    PubMed  CAS  Google Scholar 

  • Ovalle WK Jr (1972) Fine structure of rat intrafusal muscle fibers. The equatorial region. J Cell Biol 52:382–396

    Article  PubMed  Google Scholar 

  • Ross JJ, Duxson MJ, Harris AJ (1987) Formation of primary and secondary myotubes in rat lumbrical muscles. Development 100:383–394

    PubMed  CAS  Google Scholar 

  • Ruska H, Edwards GA (1957) A new cytoplasmic pattern in striated muscle fibers and its possible role in relation to growth. Growth 21:73–88

    PubMed  CAS  Google Scholar 

  • Seiler SH, Fischman DA, Leinwand LA (1996) Modulation of myosin filament organization by C–protein family members. Mol Biol Cell 7:113–127

    PubMed  CAS  Google Scholar 

  • Shimizu T, Dennis JE, Masaki T, Fischman DA (1985) Axial arrangement of the myosin rod in vertebrate thick filaments: immunoelectron microscopy with a monoclonal antibody to light meromyosin. J Cell Biol 101:1115–1123

    Article  PubMed  CAS  Google Scholar 

  • Srikakulam R, Winkelmann DA (1999) Myosin II folding is mediated by a molecular chaperonin. J Biol Chem 274:27265–27273

    Article  PubMed  CAS  Google Scholar 

  • Srikakulam R, Winkelmann DA (2004) Chaperone-mediated folding and assembly of myosin in striated muscle. J Cell Sci 117:641–652

    Article  PubMed  CAS  Google Scholar 

  • Thornell LE, Eriksson A (1981) Filament systems in the Purkinje fibers of the heart. Am J Physiol 241:H291–H305

    PubMed  CAS  Google Scholar 

  • Thornell LE, Sjostrom M, Andersson KE (1976) The relationship between mechanical stress and myofibrillar organization in heart Purkinje fibres. J Mol Cell Cardiol 8:689–695

    Article  CAS  Google Scholar 

  • Vikstrom KL, Rovner AS, Saez CG, Bravo-Zehnder M, Straceski AJ, Leinwand LA (1993) Sarcomeric myosin heavy chain expressed in nonmuscle cells forms thick filaments in the presence of substoichiometric amounts of light chains. Cell Motil Cytoskeleton 26:192–204

    Article  PubMed  CAS  Google Scholar 

  • Walker SM, Schrodt GR, Currier GJ (1975) Evidence for a structural relationship between successive parallel tubules in the SR network and supernumerary striations of Z line material in Purkinje fibers of the chicken, sheep, dog and rhesus monkey heart. J Morphol 147:459–473

    Article  PubMed  CAS  Google Scholar 

  • Wang K (1996) Titin/connectin and nebulin: giant protein rulers of muscle structure and function. Adv Biophys 33:123–134

    Article  PubMed  CAS  Google Scholar 

  • Welikson RE, Fischman DA (2002) The C–terminal IgI domains of myosin–binding proteins C and H (MyBP–C and MyBP–H) are both necessary and sufficient for the intracellular crosslinking of sarcomeric myosin in transfected non–muscle cells. J Cell Sci 115:3517–3526

    PubMed  CAS  Google Scholar 

  • Winegrad S (1999) Cardiac myosin binding protein C. Circ Res 84:1117–1126

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuan Wang.

Additional information

This work was supported by the Intramural Research Program of the NIAMS, NIH, HHS (KW).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nahirney, P.C., Fischman, D.A. & Wang, K. Myosin flares and actin leptomeres as myofibril assembly/disassembly intermediates in sonic muscle fibers. Cell Tissue Res 324, 127–138 (2006). https://doi.org/10.1007/s00441-005-0110-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-0110-3

Keywords

Navigation