Skip to main content

Advertisement

Log in

GABAergic lineage differentiation of AF5 neural progenitor cells in vitro

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

We have previously described an immortal rat central-nervous-system progenitor cell line, AF5, which is able to exit the cell cycle and assume a differentiated state with neuronal properties. The phenotypic specification of differentiated AF5 cells, however, is not known. In the present study, when induced to differentiate by serum starvation in Neurobasal medium, AF5 cells down-regulate glial fibrillary acidic protein and up-regulate expression of β–III–tubulin, medium-molecular-weight neurofilament protein, and neuronal growth-associated protein 43. Expression of the gamma-aminobutyric acid (GABA) lineage marker, glutamic acid decarboxylase 67 (GAD67), increases during differentiation, suggesting that AF5 cells adopt a GABAergic lineage. Time-course analysis of the GABAergic neuron specification transcription factor, Pitx2, by reverse transcription/polymerase chain reaction, has shown an increase in the Pitx2 transcript 48 h after initiation of differentiation. In differentiated AF5 cells, expression of the Pitx2 target gene products GAD65 and GABA transporter-1 increases. Cellular GABA levels in differentiated AF5 cells increase by about 26-fold, and GABA release into the medium is 150-fold higher compared with that of undifferentiated cells. Therefore, AF5 cells can be induced to differentiate to a neuronal phenotype with a GABAergic lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Behrstock SP, Anantharam V, Thompson KW, Schweitzer ES, Tobin AJ (2000) Conditionally-immortalized astrocytic cell line expresses GAD and secretes GABA under tetracycline regulation. J Neurosci Res 60:302–310

    Article  PubMed  CAS  Google Scholar 

  • Carpenter MK, Cui X, Hu ZY, Jackson J, Sherman S, Seiger A, Wahlberg LU (1999) In vitro expansion of a multipotent population of human neural progenitor cells. Exp Neurol 158:265–278

    Article  PubMed  CAS  Google Scholar 

  • Clayton CE, Lovett M, Rigby PW (1982) Functional analysis of a simian virus 40 super T-antigen. J Virol 44:974–982

    PubMed  CAS  Google Scholar 

  • Colby WW, Shenk T (1982) Fragments of the simian virus 40 transforming gene facilitate transformation of rat embryo cells. Proc Natl Acad Sci USA 79:5189–5193

    Article  PubMed  CAS  Google Scholar 

  • Conejero–Goldberg C, Tornatore C, Abi–Saab W, Monaco MC, Dillon–Carter O, Vawter M, Elsworth J, Freed W (2000) Transduction of human GAD67 cDNA into immortalized striatal cell lines using an Epstein–Barr virus-based plasmid vector increases GABA content. Exp Neurol 161:453–461

    Article  PubMed  CAS  Google Scholar 

  • Conzen SD, Cole CN (1995) The three transforming regions of SV40 T antigen are required for immortalization of primary mouse embryo fibroblasts. Oncogene 11:2295–2302

    PubMed  CAS  Google Scholar 

  • Eastman C, Horvitz HR, Jin Y (1999) Coordinated transcriptional regulation of the unc-25 glutamic acid decarboxylase and the unc-47 GABA vesicular transporter by the Caenorhabditis elegans UNC-30 homeodomain protein. J Neurosci 19:6225–6234

    PubMed  CAS  Google Scholar 

  • Eaton MJ, Plunkett JA, Martinez MA, Lopez T, Karmally S, Cejas P, Whittemore SR (1999) Transplants of neuronal cells bioengineered to synthesize GABA alleviate chronic neuropathic pain. Cell Transplant 8:87–101

    PubMed  CAS  Google Scholar 

  • Fricker–Gates RA, Muir JA, Dunnett SB (2004) Transplanted hNT cells ("LBS neurons") in a rat model of Huntington’s disease: good survival, incomplete differentiation, and limited functional recovery. Cell Transplant 13:123–136

    PubMed  Google Scholar 

  • Giordano M, Takashima H, Herranz A, Poltorak M, Geller HM, Marone M, Freed WJ (1993) Immortalized GABAergic cell lines derived from rat striatum using a temperature-sensitive allele of the SV40 large T antigen. Exp Neurol 124:395–400

    Article  PubMed  CAS  Google Scholar 

  • Giordano M, Takashima H, Poltorak M, Geller HM, Freed WJ (1996) Constitutive expression of glutamic acid decarboxylase (GAD) by striatal cell lines immortalized using the tsA58 allele of the SV40 large T antigen. Cell Transplant 5:563–575

    Article  PubMed  CAS  Google Scholar 

  • Jacobs WA (1987) o-Phthalaldehyde-sulfite derivatization of primary amines for liquid chromatography-electrochemistry. J Chromatogr 392:435–441

    Article  PubMed  CAS  Google Scholar 

  • Jain M, Armstrong RJ, Tyers P, Barker RA, Rosser AE (2003) GABAergic immunoreactivity is predominant in neurons derived from expanded human neural precursor cells in vitro. Exp Neurol 182:113–123

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S, Millhorn DE (2001) Hypoxia regulates glutamate metabolism and membrane transport in rat PC12 cells. J Neurochem 76:1935–1948

    Article  PubMed  CAS  Google Scholar 

  • Kono T, Nishimura F, Sugimoto H, Sikata K, Makino H, Murayama Y (2001) Human fibroblasts ubiquitously express glutamic acid decarboxylase 65 (GAD 65): possible effects of connective tissue inflammation on GAD antibody titer. J Periodontol 72:598–604

    Article  PubMed  CAS  Google Scholar 

  • Martin DM, Skidmore JM, Fox SE, Gage PJ, Camper SA (2002) Pitx2 distinguishes subtypes of terminally differentiated neurons in the developing mouse neuroepithelium. Dev Biol 252:84–99

    Article  PubMed  CAS  Google Scholar 

  • Martin DM, Skidmore JM, Philips ST, Vieira C, Gage PJ, Condie BG, Raphael Y, Martinez S, Camper SA (2004) PITX2 is required for normal development of neurons in the mouse subthalamic nucleus and midbrain. Dev Biol 267:93–108

    Article  PubMed  CAS  Google Scholar 

  • Pinal CS, Tobin AJ (1998) Uniqueness and redundancy in GABA production. Perspect Dev Neurobiol 5:109–118

    PubMed  CAS  Google Scholar 

  • Pinal CS, Cortessis V, Tobin AJ (1997) Multiple elements regulate GAD65 transcription. Dev Neurosci 19:465–475

    Article  PubMed  CAS  Google Scholar 

  • Renfranz PJ, Cunningham MG, McKay RD (1991) Region-specific differentiation of the hippocampal stem cell line HiB5 upon implantation into the developing mammalian brain. Cell 66:713–729

    Article  PubMed  CAS  Google Scholar 

  • Reynolds BA, Tetzlaff W, Weiss S (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12:4565–4574

    PubMed  CAS  Google Scholar 

  • Sah DW, Ray J, Gage FH (1997) Regulation of voltage– and ligand–gated currents in rat hippocampal progenitor cells in vitro. J Neurobiol 32:95–110

    Article  PubMed  CAS  Google Scholar 

  • Salazar P, Carmen Sanchez–Soto M, Hiriart M, Tapia R (2001) Biochemical characteristics of the gamma-aminobutyric acid system in the insulinoma cell lines HIT–T15, RIN–m5F, betaTC3, and comparison with rat brain. Arch Med Res 32:419–428

    Article  PubMed  CAS  Google Scholar 

  • Shihabuddin LS, Hertz JA, Holets VR, Whittemore SR (1995) The adult CNS retains the potential to direct region-specific differentiation of a transplanted neuronal precursor cell line. J Neurosci 15:6666–6678

    PubMed  CAS  Google Scholar 

  • Snyder EY, Deitcher DL, Walsh C, Arnold–Aldea S, Hartwieg EA, Cepko CL (1992) Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 68:33–51

    Article  PubMed  CAS  Google Scholar 

  • Thompson K, Anantharam V, Behrstock S, Bongarzone E, Campagnoni A, Tobin AJ (2000) Conditionally immortalized cell lines, engineered to produce and release GABA, modulate the development of behavioral seizures. Exp Neurol 161:481–489

    Article  PubMed  CAS  Google Scholar 

  • Trojanowski JQ, Kleppner SR, Hartley RS, Miyazono M, Fraser NW, Kesari S, Lee VM (1997) Transfectable and transplantable postmitotic human neurons: a potential "platform" for gene therapy of nervous system diseases. Exp Neurol 144:92–97

    Article  PubMed  CAS  Google Scholar 

  • Truckenmiller ME, Tornatore C, Wright RD, Dillon–Carter O, Meiners S, Geller HM, Freed WJ (1998) A truncated SV40 large T antigen lacking the p53 binding domain overcomes p53-induced growth arrest and immortalizes primary mesencephalic cells. Cell Tissue Res 291:175–189

    Article  PubMed  CAS  Google Scholar 

  • Truckenmiller ME, Vawter MP, Zhang P, Conejero–Goldberg C, Dillon–Carter O, Morales N, Cheadle C, Becker KG, Freed WJ (2002) AF5, a CNS cell line immortalized with an N-terminal fragment of SV40 large T: growth, differentiation, genetic stability and gene expression. Exp Neurol 175:318–337

    Article  PubMed  CAS  Google Scholar 

  • Varju P, Katarova Z, Madarasz E, Szabo G (2002) Sequential induction of embryonic and adult forms of glutamic acid decarboxylase during in vitro-induced neurogenesis in cloned neuroectodermal cell-line, NE-7C2. J Neurochem 80:605–615

    Article  PubMed  CAS  Google Scholar 

  • Vaudry D, Pamantung TF, Basille M, Rousselle C, Fournier A, Vaudry H, Beauvillain JC, Gonzalez BJ (2002) PACAP protects cerebellar granule neurons against oxidative stress-induced apoptosis. Eur J Neurosci 15:1451–1460

    Article  PubMed  CAS  Google Scholar 

  • Waagepetersen HS, Sonnewald U, Schousboe A (1999) The GABA paradox: multiple roles as metabolite, neurotransmitter, and neurodifferentiative agent. J Neurochem 73:1335–1342

    Article  PubMed  CAS  Google Scholar 

  • Westmoreland JJ, Hancock CR, Condie BG (2001a) Neuronal development of embryonic stem cells: a model of GABAergic neuron differentiation. Biochem Biophys Res Commun 284:674–680

    Article  PubMed  CAS  Google Scholar 

  • Westmoreland JJ, McEwen J, Moore BA, Jin Y, Condie BG (2001b) Conserved function of Caenorhabditis elegans UNC-30 and mouse Pitx2 in controlling GABAergic neuron differentiation. J Neurosci 21:6810–6819

    PubMed  CAS  Google Scholar 

  • Yoshioka A, Yudkoff M, Pleasure D (1997) Expression of glutamic acid decarboxylase during human neuronal differentiation: studies using the NTera-2 culture system. Brain Res 767:333–339

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph F. Sanchez.

Additional information

This research was supported by the IRP of NIDA, NIH, DHHS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanchez, J.F., Crooks, D.R., Lee, C. et al. GABAergic lineage differentiation of AF5 neural progenitor cells in vitro. Cell Tissue Res 324, 1–8 (2006). https://doi.org/10.1007/s00441-005-0094-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-0094-z

Keywords

Navigation