Skip to main content

Advertisement

Log in

Fibroblast growth factor 2 facilitates the differentiation of transplanted bone marrow cells into hepatocytes

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

We have developed an in vivo mouse model, the green fluorescent protein (GFP)/carbon tetrachloride (CCl4) model, and have previously reported that transplanted GFP-positive bone marrow cells (BMCs) differentiate into hepatocytes via hepatoblast intermediates. Here, we have investigated the growth factors that are closely related to the differentiation of transplanted BMCs into hepatocytes, and the way that a specific growth factor affects the differentiation process in the GFP/CCl4 model. We performed immunohistochemical analysis to identify an important growth factor in our model, viz., fibroblast growth factor (FGF). In liver samples, the expression of FGF1 and FGF2 and of FGF receptors (FGFRs; FGFR1, FGFR2) was significantly elevated with time after bone marrow transplantation (BMT) compared with other factors, and co-expression of GFP and FGFs or FGFRs could be detected. We then analyzed the effect and molecular mechanism of FGF signaling on the enhancement of BMC differentiation into hepatocytes by immunohistochemistry, immunoblotting, and microarray analysis. Treatment with recombinant FGF (rFGF), especially rFGF2, elevated the repopulation rate of GFP-positive cells in the liver and significantly increased the expression of both Liv2 (hepatoblast marker) and albumin (hepatocyte marker). Administration of rFGF2 at BMT also raised serum albumin levels and improved the survival rate. Transplantation of BMCs with rFGF2 specifically activated tumor necrosis factor-alpha (TNF-α) signaling. Thus, FGF2 facilitates the differentiation of transplanted BMCs into albumin-producing hepatocytes via Liv2-positive hepatoblast intermediates through the activation of TNF-α signaling. Administration of FGF2 in combination with BMT improves the liver function and prognosis of mice with CCl4-induced liver damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BMC:

bone marrow cell

BMT:

bone marrow transplantation

GFP:

green fluorescent protein

CCl4 :

carbon tetrachloride

SOM:

self-organizing map

FGF:

fibroblast growth factor

EGF:

epidermal growth factor

EGFR:

epidermal growth factor receptor

FGFR:

fibroblast growth factor receptor

HGF:

hepatocyte growth factor

VEGF:

vascular endothelial growth factor

VEGFR:

vascular endothelial growth factor receptor

PDGF:

platelet-derived growth factor

PDGFR:

platelet-derived growth factor receptor

TGFβ:

transforming growth factor β

TGFβR:

transforming growth factor β receptor

rFGF:

recombinant fibroblast growth factor

TNF-α:

tumor necrosis factor-α

TNFIP3:

tumor necrosis factor-α induced protein 3

NF-κB:

nuclear factor-κB

References

  • Alison MR, Poulsom R, Jeffery R, Dhillon AP, Quaglia A, Jacob J, Novelli M, Prentice G, Williamson J, Wright NA (2000) Hepatocytes from non-hepatic adult stem cells. Nature 406:257

    Article  PubMed  CAS  Google Scholar 

  • Detillieux KA, Sheikh F, Kardami E, Cattini PA (2003) Biological activities of fibroblast growth factor-2 in the adult myocardium. Cardiovasc Res 57:8–19

    Article  PubMed  CAS  Google Scholar 

  • Deutsch G, Jung J, Zheng M, Lora J, Zaret KS (2001) A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 128:871–881

    PubMed  CAS  Google Scholar 

  • Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530

    Article  PubMed  CAS  Google Scholar 

  • Fu X, Shen Z, Guo Z, Zhang M, Sheng Z (2002) Healing of chronic cutaneous wounds by topical treatment with basic fibroblast growth factor. Chin Med J (Engl) 115:331–335

    CAS  Google Scholar 

  • Goodman SB, Song Y, Yoo JY, Fox N, Trindade MC, Kajiyama G, Ma T, Regula D, Brown J, Smith RL (2003) Local infusion of FGF-2 enhances bone ingrowth in rabbit chambers in the presence of polyethylene particles. J Biomed Mater Res 65A:454–461

    Article  CAS  Google Scholar 

  • Harris RG, Herzog EL, Bruscia EM, Grove JE, Van Arnam JS, Krause DS (2004) Lack of a fusion requirement for development of bone marrow-derived epithelia. Science 305:90–93

    Article  PubMed  CAS  Google Scholar 

  • Hochedlinger K, Blelloch R, Brennan C, Yamada Y, Kim M, Chin L, Jaenisch R (2004) Reprogramming of a melanoma genome by nuclear transplantation. Genes Dev 18:1875–1885

    Article  PubMed  CAS  Google Scholar 

  • Ianus A, Holz GG, Theise ND, Hussain MA (2003) In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 111:843–850

    Article  PubMed  CAS  Google Scholar 

  • Idel S, Dansky HM, Breslow JL (2003) A20, a regulator of NFkappaB, maps to an atherosclerosis locus and differs between parental sensitive C57BL/6J and resistant FVB/N strains. Proc Natl Acad Sci U S A 100:14235–14240

    Article  PubMed  CAS  Google Scholar 

  • Ishigaki S, Niwa J, Ando Y, Yoshihara T, Sawada K, Doyu M, Yamamoto M, Kato K, Yotsumoto Y, Sobue G (2002) Differentially expressed genes in sporadic amyotrophic lateral sclerosis spinal cords–screening by molecular indexing and subsequent cDNA microarray analysis. FEBS Lett 531:354–358

    Article  PubMed  CAS  Google Scholar 

  • Jang YY, Collector MI, Baylin SB, Diehl AM, Sharkis SJ (2004) Hematopoietic stem cells convert into liver cells within days without fusion. Nat Cell Biol 6:532–539

    Article  PubMed  CAS  Google Scholar 

  • Jung J, Zheng M, Goldfarb M, Zaret KS (1999) Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science 284:1998–2003

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Miyajima A (2002) Cytokine regulation of liver development. Biochim Biophys Acta 1592:303–312

    Article  PubMed  CAS  Google Scholar 

  • Kollet O, Shivtiel S, Chen YQ, Suriawinata J, Thung SN, Dabeva MD, Kahn J, Spiegel A, Dar A, Samira S, Goichberg P, Kalinkovich A, Arenzana-Seisdedos F, Nagler A, Hardan I, Revel M, Shafritz DA, Lapidot T (2003) HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. J Clin Invest 112:160–169

    Article  PubMed  CAS  Google Scholar 

  • Kotton DN, Ma BY, Cardoso WV, Sanderson EA, Summer RS, Williams MC, Fine A (2001) Bone marrow-derived cells as progenitors of lung alveolar epithelium. Development 128:5181–5188

    PubMed  CAS  Google Scholar 

  • Kowalczyk J, Pasyk S (2002) Vascular endothelial growth factor and its application in therapy of cardiovascular diseases. Pol Merkuriusz Lek 13:74–78

    Google Scholar 

  • Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377

    Article  PubMed  CAS  Google Scholar 

  • Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman IL, Grompe M (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6:1229–1234

    Article  PubMed  CAS  Google Scholar 

  • Laham RJ, Chronos NA, Pike M, Leimbach ME, Udelson JE, Pearlman JD, Pettigrew RI, Whitehouse MJ, Yoshizawa C, Simons M (2000) Intracoronary basic fibroblast growth factor (FGF-2) in patients with severe ischemic heart disease: results of a phase I open-label dose escalation study. J Am Coll Cardiol 36:2132–2139

    Article  PubMed  CAS  Google Scholar 

  • Lederman RJ, Mendelsohn FO, Anderson RD, Saucedo JF, Tenaglia AN, Hermiller JB, Hillegass WB, Roccha-Singh K, Moon TE, Whitehouse MJ, Annex BH (2002) Therapeutic angiogenesis with recombinant fibroblast growth factor-2 for intermittent claudication (the TRAFFIC study): a randomised trial. Lancet 359:2053–2058

    Article  PubMed  CAS  Google Scholar 

  • Okamoto R, Yajima T, Yamazaki M, Kanai T, Mukai M, Okamoto S, Ikeda Y, Hibi T, Inazawa J, Watanabe M (2002) Damaged epithelia regenerated by bone marrow-derived cells in the human gastrointestinal tract. Nat Med 8:1011–1017

    Article  PubMed  CAS  Google Scholar 

  • Omori K, Terai S, Ishikawa T, Aoyama K, Sakaida I, Nishina H, Shinoda K, Uchimura S, Hamamoto Y, Okita K (2004) Molecular signature associated with plasticity of bone marrow cell under persistent liver damage by self-organizing-map-based gene expression. FEBS Lett 578:10–20

    Article  PubMed  CAS  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  PubMed  CAS  Google Scholar 

  • Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, Boggs SS, Greenberger JS, Goff JP (1999) Bone marrow as a potential source of hepatic oval cells. Science 284:1168–1170

    Article  PubMed  CAS  Google Scholar 

  • Sakaida I, Terai S, Yamamoto N, Aoyama K, Ishikawa T, Nishina H, Okita K (2004) Transplantation of bone marrow cells reduces CCl4-induced liver fibrosis in mice. Hepatology 40:1304–1311

    Article  PubMed  Google Scholar 

  • Shinoda K, Mori S, Ohtsuki T, Osawa Y (1992) An aromatase-associated cytoplasmic inclusion, the “stigmoid body,” in the rat brain. I. Distribution in the forebrain. J Comp Neurol 322:360–376

    Article  PubMed  CAS  Google Scholar 

  • Stamm C, Westphal B, Kleine HD, Petzsch M, Kittner C, Klinge H, Schumichen C, Nienaber CA, Freund M, Steinhoff G (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361:45–46

    Article  PubMed  Google Scholar 

  • Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, Morel L, Petersen BE, Scott EW (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416:542–545

    Article  PubMed  CAS  Google Scholar 

  • Terai S, Sakaida I, Yamamoto N, Omori K, Watanabe T, Ohata S, Katada T, Miyamoto K, Shinoda K, Nishina H, Okita K (2003) An in vivo model for monitoring trans-differentiation of bone marrow cells into functional hepatocytes. J Biochem (Tokyo) 134:551–558

    CAS  Google Scholar 

  • Theise ND, Nimmakayalu M, Gardner R, Illei PB, Morgan G, Teperman L, Henegariu O, Krause DS (2000) Liver from bone marrow in humans. Hepatology 32:11–16

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Ge S, McNamara G, Hao QL, Crooks GM, Nolta JA (2003) Albumin-expressing hepatocyte-like cells develop in the livers of immune-deficient mice that received transplants of highly purified human hematopoietic stem cells. Blood 101:4201–4208

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Nakagawa K, Ohata S, Kitagawa D, Nishitai G, Seo J, Tanemura S, Shimizu N, Kishimoto H, Wada T, Aoki J, Arai H, Iwatsubo T, Mochita M, Satake M, Ito Y, Matsuyama T, Mak T, Penninger J, Nishina H, Katada T (2002) SEK1/MKK4-mediated SAPK/JNK signaling participates in embryonic hepatoblast proliferation via a pathway different from NF-kappaB-induced anti-apoptosis. Dev Biol 250:332–347

    PubMed  CAS  Google Scholar 

  • Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83:835–870

    PubMed  CAS  Google Scholar 

  • Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM (2003) Adult bone marrow is a rich source of human mesenchymal “stem” cells but umbilical cord and mobilized adult blood are not. Br J Haematol 121:368–374

    Article  PubMed  Google Scholar 

  • Yamada Y, Fausto N (1998) Deficient liver regeneration after carbon tetrachloride injury in mice lacking type 1 but not type 2 tumor necrosis factor receptor. Am J Pathol 152:1577–1589

    PubMed  CAS  Google Scholar 

  • Yamamoto N, Terai S, Ohata S, Watanabe T, Omori K, Shinoda K, Miyamoto K, Katada T, Sakaida I, Nishina H, Okita K (2004) A subpopulation of bone marrow cells depleted by a novel antibody, anti-Liv8, is useful for cell therapy to repair damaged liver. Biochem Biophys Res Commun 313:1110–1118

    Article  PubMed  CAS  Google Scholar 

  • Ying QL, Nichols J, Evans EP, Smith AG (2002) Changing potency by spontaneous fusion. Nature 416:545–548

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Masaru Okabe (Genome Research Center, Osaka University) for the gift of GFP transgenic mice and Mr. Jun Oba for valuable technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuji Terai.

Additional information

This study was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (nos. 13470121, 13770262, 15790348, 16390211, and 16590597) and for translational research from the Ministry of Health, Labor and Welfare (H-trans-5).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishikawa, T., Terai, S., Urata, Y. et al. Fibroblast growth factor 2 facilitates the differentiation of transplanted bone marrow cells into hepatocytes. Cell Tissue Res 323, 221–231 (2006). https://doi.org/10.1007/s00441-005-0077-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-0077-0

Keywords

Navigation