Skip to main content

Advertisement

Log in

β-Catenin regulation during matrigel-induced rat hepatocyte differentiation

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Hepatocytes in primary cultures de-differentiate and re-differentiate following addition of Engelbreth-Holm-Swarm mouse sarcoma (matrigel) to the cultures. The Wnt/β-catenin pathway has been shown to be important in liver growth and development. Here, we investigate changes in β-catenin and its mechanism, during matrigel-induced hepatocyte differentiation. Primary rat hepatocytes were cultured for 8 days, and matrigel was added to half of the cultures. Total and nuclear protein and total RNA were extracted at different days of culture and examined for β-catenin and other Wnt pathway components. A significant increase in total β-catenin protein was observed upon matrigel addition, during hepatocyte differentiation, despite a decrease in β-catenin and frizzled-1 (Wnt receptor) expression. A concurrent decrease in the glycogen synthase kinase-3β (GSK3β), axin, and ser45/thr41-phosphorylated β-catenin proteins was observed in matrigel-treated cultures, implying decreased degradation of β-catenin. Interestingly, a decrease in nuclear β-catenin and total active β-catenin was observed in the presence of matrigel. Matrigel also induced an increased association of β-catenin with Met (hepatocyte growth factor receptor), whereas association with E-cadherin remained unchanged. This coexisted with decreased β-catenin tyrosine phosphorylation. Thus, β-catenin undergoes multifactorial regulation during matrigel-induced hepatocyte differentiation and maturation; this induces its stabilization and membrane translocation, possibly contributing to hepatocyte differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aberle H, Bauer A, Stappert J, Kispert A, Kemler R (1997) Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 16:3797–3804

    Article  PubMed  CAS  Google Scholar 

  • Ackland ML, Newgreen DF, Fridman M et al (2003) Epidermal growth factor-induced epithelio-mesenchymal transition in human breast carcinoma cells. Lab Invest 83:435–448

    PubMed  CAS  Google Scholar 

  • Barker N, Morin PJ, Clevers H (2000) The Yin-Yang of TCF/beta-catenin signaling. Adv Cancer Res 77:1–24

    PubMed  CAS  Google Scholar 

  • Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4:915–925

    Article  PubMed  CAS  Google Scholar 

  • Bissell DM, Arenson DM, Maher JJ, Roll FJ (1987) Support of cultured hepatocytes by a laminin-rich gel. Evidence for a functionally significant subendothelial matrix in normal rat liver. J Clin Invest 79:801–812

    Article  PubMed  CAS  Google Scholar 

  • Block GD, Locker J, Bowen WC et al (1996) Population expansion, clonal growth, and specific differentiation patterns in primary cultures of hepatocytes induced by HGF/SF, EGF and TGF alpha in a chemically defined (HGM) medium. J Cell Biol 132:1133–1149

    Article  PubMed  CAS  Google Scholar 

  • Brannon M, Kimelman D (1996) Activation of Siamois by the Wnt pathway. Dev Biol 180:344–347

    Article  PubMed  CAS  Google Scholar 

  • Cheon SS, Nadesan P, Poon R, Alman BA (2004) Growth factors regulate beta-catenin-mediated TCF-dependent transcriptional activation in fibroblasts during the proliferative phase of wound healing. Exp Cell Res 293:267–274

    Article  PubMed  CAS  Google Scholar 

  • Devereux TR, Stern MC, Flake GP et al (2001) CTNNB1 mutations and beta-catenin protein accumulation in human hepatocellular carcinomas associated with high exposure to aflatoxin B1. Mol Carcinog 31:68–73

    Article  PubMed  CAS  Google Scholar 

  • Duncan SA (2003) Mechanisms controlling early development of the liver. Mech Dev 120:19–33

    Article  PubMed  CAS  Google Scholar 

  • Furuhashi M, Yagi K, Yamamoto H et al (2001) Axin facilitates Smad3 activation in the transforming growth factor beta signaling pathway. Mol Cell Biol 21:5132–5141

    Article  PubMed  CAS  Google Scholar 

  • Haegel H, Larue L, Ohsugi M, Fedorov L, Herrenknecht K, Kemler R (1995) Lack of beta-catenin affects mouse development at gastrulation. Development 121:3529–37

    PubMed  CAS  Google Scholar 

  • Hussain SZ, Sneddon T, Tan X, Micsenyi A, Michalopoulos GK, Monga SP (2004) Wnt impacts growth and differentiation in ex vivo liver development. Exp Cell Res 292:157–169

    Article  PubMed  CAS  Google Scholar 

  • Jankowski JA, Bruton R, Shepherd N, Sanders DS (1997) Cadherin and catenin biology represent a global mechanism for epithelial cancer progression. Mol Pathol 50:289–290

    Article  PubMed  CAS  Google Scholar 

  • Kim TH, Bowen WC, Stolz DB, Runge D, Mars WM, Michalopoulos GK (1998) Differential expression and distribution of focal adhesion and cell adhesion molecules in rat hepatocyte differentiation. Exp Cell Res 244:93–104

    Article  PubMed  CAS  Google Scholar 

  • Kleinman HK, McGarvey ML, Liotta LA, Robey PG, Tryggvason K, Martin GR (1982) Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 21:6188–6193

    Article  PubMed  CAS  Google Scholar 

  • Koch A, Denkhaus D, Albrecht S, Leuschner I, von Schweinitz D, Pietsch T (1999) Childhood hepatoblastomas frequently carry a mutated degradation targeting box of the beta-catenin gene. Cancer Res 59:269–273

    PubMed  CAS  Google Scholar 

  • Kost DP, Michalopoulos GK (1991) Effect of 2% dimethyl sulfoxide on the mitogenic properties of epidermal growth factor and hepatocyte growth factor in primary hepatocyte culture. J Cell Physiol 147:274–280

    Article  PubMed  CAS  Google Scholar 

  • Larsen MC, Brake PB, Pollenz RS, Jefcoate CR (2004) Linked expression of Ah receptor, ARNT, CYP1A1, and CYP1B1 in rat mammary epithelia, in vitro, is each substantially elevated by specific extracellular matrix interactions that precede branching morphogenesis. Toxicol Sci 82:46–61

    Article  PubMed  CAS  Google Scholar 

  • Ledig MM, Haj F, Bixby JL, Stoker AW, Mueller BK (1999) The receptor tyrosine phosphatase CRYPalpha promotes intraretinal axon growth. J Cell Biol 147:375–388

    Article  PubMed  CAS  Google Scholar 

  • Lemaigre F, Zaret KS (2004) Liver development update: new embryo models, cell lineage control, and morphogenesis. Curr Opin Genet Dev 14:582–590

    Article  PubMed  CAS  Google Scholar 

  • Letamendia A, Labbe E, Attisano L (2001) Transcriptional regulation by Smads: crosstalk between the TGF-beta and Wnt pathways. J Bone Joint Surg Am 83-A Suppl 1(Pt 1):S31–S39

    PubMed  CAS  Google Scholar 

  • Micsenyi A, Tan X, Sneddon T, Luo JH, Michalopoulos GK, Monga SP (2004) Beta-catenin is temporally regulated during normal liver development. Gastroenterology 126:1134–1146

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi Y, Iwao K, Nagasawa Y et al (1998) Activation of the beta-catenin gene in primary hepatocellular carcinomas by somatic alterations involving exon 3. Cancer Res 58:2524–2527

    PubMed  CAS  Google Scholar 

  • Monga SP, Pediaditakis P, Mule K, Stolz DB, Michalopoulos GK (2001) Changes in WNT/beta-catenin pathway during regulated growth in rat liver regeneration. Hepatology 33:1098–1109

    Article  PubMed  CAS  Google Scholar 

  • Monga SP, Mars WM, Pediaditakis P et al (2002) Hepatocyte growth factor induces Wnt-independent nuclear translocation of beta-catenin after Met-beta-catenin dissociation in hepatocytes. Cancer Res 62:2064–2071

    PubMed  CAS  Google Scholar 

  • Monga SP, Monga HK, Tan X, Mule K, Pediaditakis P, Michalopoulos GK (2003) Beta-catenin antisense studies in embryonic liver cultures: role in proliferation, apoptosis, and lineage specification. Gastroenterology 124:202–216

    Article  PubMed  CAS  Google Scholar 

  • Papkoff J (1997) Regulation of complexed and free catenin pools by distinct mechanisms. Differential effects of Wnt-1 and v-Src. J Biol Chem 272:4536–4543

    PubMed  CAS  Google Scholar 

  • Peifer M, Polakis P (2000) Wnt signaling in oncogenesis and embryogenesis–a look outside the nucleus. Science 287:1606–1609

    Article  PubMed  CAS  Google Scholar 

  • Polakis P (2000) Wnt signaling and cancer. Genes Dev 14:1837–1851

    PubMed  CAS  Google Scholar 

  • Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P (1996) Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science 272:1023–1026

    Article  PubMed  CAS  Google Scholar 

  • Sorby M, Sandstrom J, Ostman A (2001) An extracellular ligand increases the specific activity of the receptor-like protein tyrosine phosphatase DEP-1. Oncogene 20:5219–5224

    Article  PubMed  CAS  Google Scholar 

  • Staal FJ, Noort Mv M, Strous GJ, Clevers HC (2002) Wnt signals are transmitted through N-terminally dephosphorylated beta-catenin. EMBO Rep 3:63–68

    Article  PubMed  CAS  Google Scholar 

  • Strick-Marchand H, Weiss MC (2003) Embryonic liver cells and permanent lines as models for hepatocyte and bile duct cell differentiation. Mech Dev 120:89–98

    Article  PubMed  CAS  Google Scholar 

  • Zorn AM, Butler K, Gurdon JB (1999) Anterior endomesoderm specification in Xenopus by Wnt/beta-catenin and TGF-beta signalling pathways. Dev Biol 209:282–297

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satdarshan P. S. Monga.

Additional information

A. Micsenyi and M. Germinaro contributed equally to this work.

Grant Support: Rango's fund for Enhancement of Pathology Research, American Cancer Society Grant-RSG-03-141-01 and National Institute of Health Grant 1RO1DK62277, to SPSM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monga, S.P.S., Micsenyi, A., Germinaro, M. et al. β-Catenin regulation during matrigel-induced rat hepatocyte differentiation. Cell Tissue Res 323, 71–79 (2006). https://doi.org/10.1007/s00441-005-0045-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-0045-8

Keywords

Navigation