Skip to main content

Advertisement

Log in

Immunocytochemical studies on translocation of phosphorylated aquaporin-h2 protein in granular cells of the frog urinary bladder before and after stimulation with vasotocin

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

We have generated a specific antibody against phosphorylated aquaporin-h2 (pAQP-h2) protein to investigate the role of phosphorylation in the translocation of AQP-h2 protein within the granule cells of the urinary bladder of the frog (Hyla japonica). The antibody was generated against a synthetic peptide (ST-160) corresponding to amino acids 255–268, with a phosphorylated Ser-262, a residue that is putatively phosphorylated by protein A kinase. Using this antibody, we found, by Western blot analysis, that phosphorylation of the AQP-h2 protein rapidly increased within 2 min after vasotocin (AVT) stimulation and remained at a higher than normal level for 15 min. Moreover, quantitative immunoelectron microscopy indicated that the location of the AQP-h2 protein dramatically changed after AVT stimulation. Before stimulation, pAQP-h2 protein was localized in only a small number of intracellular vesicles near the nucleus of the granular cells, whereas the labeling density of the intracellular vesicles and the apical membrane rapidly increased after stimulation. This finding was also confirmed by the results of an immunofluorescence study. Thus, phosphorylation of AQP-h2 protein seems to be essential for translocation of the protein from the cytoplasmic pool to the apical plasma membrane of the granular cells in frog urinary bladder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bentley PJ (2002) The Amphibia. In: Bentley PJ (ed) Endocrines and osmoregulation. A comparative account in vertebrates, vol 39. Springer, Berlin Heidelberg New York, pp 155–186

    Google Scholar 

  • Brown D (1989) Membrane recycling and epithelial cell function. Am J Physiol 256:F1–F12

    PubMed  CAS  Google Scholar 

  • Brown D, Grosso A, DeSousa RC (1983) Correlation between water flow and intramembrane particle aggregates in toad epidermis. Am J Physiol 245:C334–C342

    PubMed  CAS  Google Scholar 

  • Brown D, Katsura T, Gustafson CE (1998) Cellular mechanisms of aquaporin trafficking. Am J Physiol 275:F328–F331

    PubMed  CAS  Google Scholar 

  • Chevalier J, Bourguet J, Hugon JS (1974) Membrane associated particles: distribution in frog urinary bladder epithelium at rest and after oxytocin treatment. Cell Tissue Res 152:129–140

    Article  PubMed  CAS  Google Scholar 

  • Christensen BM, Zelenina M, Aperia A, Nielsen S (2000) Localization and regulation of PKA-phosphorylated AQP2 in response to V(2)-receptor agonist/antagonist treatment. Am J Physiol Renal Physiol 278:F29–F42

    PubMed  CAS  Google Scholar 

  • Fushimi K, Uchida S, Hara Y, Hirata Y, Marumo F, Sasaki S (1993) Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature 361:549–552

    Article  PubMed  CAS  Google Scholar 

  • Fushimi K, Sasaki S, Marumo F (1997) Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel. J Biol Chem 272:14800–14804

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa T, Tanii H, Suzuki M, Tanaka S (2003) Regulation of water absorption in the frog skins by 2 vasotocin-dependent water-channel aquaporins, AQP-h2 and AQP-h3. Endocrinology 144:4087–4096

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi K, Kuwahara M, Sasaki S (2000) Molecular biology of aquaporins. Rev Physiol Biochem Pharmacol 141:1–32

    Article  PubMed  CAS  Google Scholar 

  • Kachadorian WA, Wade JB, DiScala VA (1975) Vasopressin: induced structural change in toad bladder luminal membrane. Science 190:67–69

    Article  PubMed  CAS  Google Scholar 

  • Kachadorian WA, Muller J, Ellis SJ (1986) Time-dependent attenuation of water flow in antidiuretic hormone-treated toad bladder. Am J Physiol 250:F845–F849

    PubMed  CAS  Google Scholar 

  • Kachadorian WA, Spring KR, Shinowara NL, Muller J, Palaia TA, DiScala VA (1990) Effects of serosal hypertonicity on water permeability in toad urinary bladder. Am J Physiol 258:C871–C878

    PubMed  CAS  Google Scholar 

  • Katsura T, Gustafson CE, Ausiello DA, Brown D (1997) Protein kinase A phosphorylation is involved in regulated exocytosis of aquaporin-2 in transfected LLC-PK1 cells. Am J Physiol 272:F817–F822

    PubMed  CAS  Google Scholar 

  • Keller GA, Tokuyasu KT, Dutton AH, Singer SJ (1984) An improved procedure for immunoelectron microscopy: ultrathin plastic embedding of immunolabeled ultrathin frozen sections. Proc Natl Acad Sci U S A 81:5744–5747

    Article  PubMed  CAS  Google Scholar 

  • Kuwahara M, Fushimi K, Terada Y, Bai L, Marumo F, Sasaki S (1995) cAMP-dependent phosphorylation stimulates water permeability of aquaporin-collecting duct water channel protein expressed in Xenopus oocytes. J Biol Chem 270:10384–10387

    Article  PubMed  CAS  Google Scholar 

  • Lorenz D, Krylov A, Hahm D, Hagen V, Rosenthal W, Pohl P, Maric K (2003) Cyclic AMP is sufficient for triggering the exocytic recruitment of aquaporin-2 in renal epithelial cells. EMBO Rep 4:88–93

    Article  PubMed  CAS  Google Scholar 

  • Martin S, Slot JW, James DE (1999) GLUT4 trafficking in insulin-sensitive cells. A morphological review. Cell Biochem Biophys 30:89–113

    Article  PubMed  CAS  Google Scholar 

  • Nielsen S, DiGiovanni SR, Christensen EI, Knepper MA, Harris HW (1993) Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proc Natl Acad Sci U S A 90:11663–11667

    Article  PubMed  CAS  Google Scholar 

  • Nielsen S, Chou CL, Marples D, Christensen EI, Kishore BK, Knepper MA (1995) Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci U S A 92:1013–1017

    Article  PubMed  CAS  Google Scholar 

  • Nishimoto G, Zelenina M, Li D, Yasui M, Aperia A, Nielsen S, Nairn AC (1999) Arginine vasopressin stimulates phosphorylation of aquaporin-2 in rat renal tissue. Am J Physiol 276:F254–F259

    PubMed  CAS  Google Scholar 

  • Orci L, Montesano R, Brown D (1980) Heterogeneity of toad bladder granular cell luminal membranes. Distribution of filipin-sterol complexes in freeze-fracture. Biochim Biophys Acta 601:443–452

    Article  PubMed  CAS  Google Scholar 

  • Park JH, Saier MH Jr (1996) Phylogenetic characterization of the MIP family of transmembrane channel proteins. J Membr Biol 153:171–180

    Article  PubMed  CAS  Google Scholar 

  • Preston GM, Agre P (1991) Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci U S A 88:11110–11114

    Article  PubMed  CAS  Google Scholar 

  • Rodnick KJ, Slot JW, Studelska DR, Hanpeter DE, Robinson LJ, Geuze HJ, James DE (1992) Immunocytochemical and biochemical studies of GLUT4 in rat skeletal muscle. J Biol Chem 267:6278–6285

    PubMed  CAS  Google Scholar 

  • Slot JW, Geuze HJ, Gigengack S, Lienhard GE, James DE (1991) Immuno-localization of the regulatable glucose transporter in brown adipose tissue of the rat. J Cell Biol 113:123–135

    Article  PubMed  CAS  Google Scholar 

  • Tajika Y, Matsuzaki T, Suzuki T, Aoki T, Hagiwara H, Tanaka S, Kominami E, Takata K (2002) Immunohistochemical characterization of the intracellular pool of water channel aquaporin-2 in the kidney. Anat Sci Inter 77:189–195

    Article  Google Scholar 

  • Takata K, Matsuzaki T, Tajika Y (2004) Aquaporins: water channel proteins of the cell membrane. Prog Histochem Cytochem 39:1–83

    Article  PubMed  CAS  Google Scholar 

  • Tanaka S, Kurosumi K (1992) A certain step of proteolytic processing of proopiomelanocortin occurs during the transition between two distinct stages of secretory granules maturation in rat anterior pituitary corticotrophs. Endocrinology 131:779–786

    Article  PubMed  CAS  Google Scholar 

  • Tanaka S, Nomizu M, Kurosumi K (1991) Intracellular sites of proteolytic processing of pro-opiomelanocortin in melanotrophs and corticotrophs in the rat pituitary. J Histochem Cytochem 39:809–821

    PubMed  CAS  Google Scholar 

  • Tanaka S, Yora T, Nakayama K, Inoue K, Kurosumi K (1997) Proteolytic processing of pro-opiomelanocortin occurs in acidifying secretory granules of AtT-20 cells. J Histochem Cytochem 45:425–436

    PubMed  CAS  Google Scholar 

  • Tanii H, Hasegawa T, Hirakawa N, Suzuki M, Tanaka S (2002) Molecular and cellular characterization of a water channel protein, AQP-h3, specifically expressed in the frog ventral skin. J Membr Biol 188:43–53

    Article  PubMed  CAS  Google Scholar 

  • Tokuyasu K (1986) Application of cryomicrotomy to immunocytochemistry. J Microsc 143:139–149

    PubMed  CAS  Google Scholar 

  • Wade JB, Stetson DL, Lewis SA (1981) ADH action: evidence for a membrane shuttle mechanism. Ann N Y Acad Sci 372:106–117

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeyasu Tanaka.

Additional information

This work was supported in part by a grant-in-aid for scientific research from the Ministry of Education, Science, Sports, and Culture of Japan to S.T.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasegawa, T., Suzuki, M. & Tanaka, S. Immunocytochemical studies on translocation of phosphorylated aquaporin-h2 protein in granular cells of the frog urinary bladder before and after stimulation with vasotocin. Cell Tissue Res 322, 407–415 (2005). https://doi.org/10.1007/s00441-005-0037-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-0037-8

Keywords

Navigation