Skip to main content
Log in

Identification of keratins and analysis of their expression in carp and goldfish: comparison with the zebrafish and trout keratin catalog

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

With more than 50 genes in human, keratins make up a large gene family, but the evolutionary pressure leading to their diversity remains largely unclear. Nevertheless, this diversity offers a means to examine the evolutionary relationships among organisms that express keratins. Here, we report the analysis of keratins expressed in two cyprinid fishes, goldfish and carp, by two-dimensional polyacrylamide gel electrophoresis, complementary keratin blot binding assay, and immunoblotting. We further explore the expression of keratins by immunofluorescence microscopy. Comparison is made with the keratin expression and catalogs of zebrafish and rainbow trout. The keratins among these fishes exhibit a similar range of molecular weights and isoelectric points, with a similar overall pattern on two-dimensional gels. In addition, immunofluorescence microscopy studies of goldfish and carp tissues have revealed the expression of keratins in both epithelial and mesenchymally derived tissues, as reported previously for zebrafish and trout. We conclude that keratin expression is qualitatively similar among these fishes, with goldfish and carp patterns being more similar to each other than to zebrafish, and the cyprinid fishes being more similar to each other than to the salmonid trout. Because of the detected similarity of keratin expression among the cyprinid fishes, we propose that, for certain experiments, they are interchangeable. Although the zebrafish distinguishes itself as being a developmental and genetic/genomic model organism, we have found that the goldfish, in particular, is a more suitable model for both biochemical and histological studies of the cytoskeleton, especially since goldfish cytoskeletal preparations seem to be more resistant to degradation than those from carp or zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alibardi L (2001) Keratinization in the epidermis of amphibians and the lungfish: comparison with amniote keratinization. Tissue Cell 33:439–449

    Article  PubMed  CAS  Google Scholar 

  • Alibardi L (2002) Immunocytochemical localization of keratins, accociated proteins and uptake of histidine in the epidermis of fish and amphibians. Acta Histochem 104:297–310

    Article  PubMed  CAS  Google Scholar 

  • Alibardi L, Joss JMP (2003) Keratinization of the epidermis of the Australian lungfish Neoceratodus forsteri. J Morphol 256:13–22

    Article  PubMed  Google Scholar 

  • Cerda J, Conrad M, Markl J, Brand M, Herrmann H (1998) Zebrafish vimentin: molecular characterization, assembly properties and developmental expression. Eur J Cell Biol 77:1–13

    PubMed  Google Scholar 

  • Cohen F, Shani Y, Blaugrund E, Schwartz M (1991) Isolation and sequence analysis of two intermediate filament cDNA clones from fish optic nerve. Mol Brain Res 11:181–185

    Article  PubMed  CAS  Google Scholar 

  • Conrad M, Lemb K, Schubert T, Markl J (1998) Biochemical identification and tissue-specific expression patterns of keratins in the zebrafish Danio rerio. Cell Tissue Res 293:195–205

    Article  PubMed  CAS  Google Scholar 

  • Corcoran JP, Ferretti P (1997) Keratin 8 and 18 expression in mesenchymal progenitor cells of regenerating limbs is associated with cell proliferation and differentiation. Dev Dyn 210:355–370

    Article  PubMed  CAS  Google Scholar 

  • Corcoran JP, Ferretti P (1999) RA regulation of keratin expression and myogenesis suggests different ways of regenerating muscle in adult amphibian limbs. J Cell Sci 112:1385–1394

    PubMed  CAS  Google Scholar 

  • Druger RK, Levine EM, Glasgow E, Jones PS, Schechter N (1992) Cloning of a type I keratin from goldfish optic nerve: differential expression of keratins during regeneration. Differentiation 52:33–43

    Article  PubMed  CAS  Google Scholar 

  • Druger RK, Glasgow E, Fuchs C, Levine EM, Matthews JP, Park CY, Schechter N (1994) Complex expression of keratins in goldfish optic nerve. J Comp Neurol 340:269–280

    Article  PubMed  CAS  Google Scholar 

  • Ferretti P, Fekete DM, Patterson M, Lane EB (1989) Transient expression of simple epithelial keratins by mesenchymal cells of regenerating newt limb. Dev Biol 133:415–424

    Article  PubMed  CAS  Google Scholar 

  • Ferretti P, Corcoran JP, Ghosh S (1993) Expression and regulation of keratins in the wound epithelium and mesenchyme of the regenerating newt limb. Prog Clin Biol Res 383A:261–269

    PubMed  CAS  Google Scholar 

  • Fouquet B (1991) Expression von Intermediärfilament-Proteinen in Xenopus laevis. Doctoral Thesis, Faculty of Biology, Heidelberg

  • Franke WW, Schmid E, Osborn M, Weber K (1978) Different intermediate-sized filaments distinguished by immunofluorescence microscopy. Proc Natl Acad Sci U S A 75:5034–5038

    Article  PubMed  CAS  Google Scholar 

  • Franz JK, Franke WW (1986) Cloning of cDNA and amino acid sequence of a cytokeratin expressed in oocytes of Xenopus laevis. Proc Natl Acad Sci U S A 83:6475–6479

    Article  PubMed  CAS  Google Scholar 

  • Fuchs E, Weber K (1994) Intermediate filaments: structure, dynamics, function and disease. Annu Rev Biochem 63:345–382

    PubMed  CAS  Google Scholar 

  • Fuchs C, Druger RK, Glasgow E, Schechter N (1994) Differential expression of keratins in goldfish optic nerve during regeneration. J Comp Neurol 343:332–340

    Article  PubMed  CAS  Google Scholar 

  • Giordano S, Glasgow E, Tesser P, Schechter N (1989) A type II keratin is expressed in glial cells of the goldfish visual pathway. Neuron 2:1507–1516

    Article  PubMed  CAS  Google Scholar 

  • Giordano S, Hall C, Quitschke W, Glasgow E, Schechter N (1990) Keratin 8 of simple epithelia is expressed in glia of the goldfish nervous system. Differentiation 44:163–172

    Article  PubMed  CAS  Google Scholar 

  • Gong Z, Ju B, Wang X, He J, Wan H, Sudha PM, Yan T (2002) Green fluorescent protein expression in germ-line transmitted transgenic zebrafish under a stratified epithelial promoter from keratin8. Dev Dyn 223:204–215

    Article  PubMed  CAS  Google Scholar 

  • Groff JM, Nayan DK, Higgins RJ (1997a) Cytokeratin-filament expression in epithelial and non-epithelial tissues of the common carp (Cyprinus carpio). Cell Tissue Res 287:375–384

    Article  PubMed  CAS  Google Scholar 

  • Groff JM, Naydan DK, Zinkl JG, Osburn BI (1997b) Immunological cross-reactivity of type I–III intermediate filaments in the common carp: in situ localization with use of heterologous antibodies. Trans Am Fish Soc 126:948–960

    Article  Google Scholar 

  • Herrmann H, Münick MD, Brettel M, Fouquet B, Markl J (1996) Vimentin in a cold-water fish, the rainbow trout: highly conserved primary structure but unique assembly properties. J Cell Sci 109:569–578

    PubMed  CAS  Google Scholar 

  • Herrmann H, Hesse M, Reichenzeller M, Aebi U, Magin TM (2003) Intermediate filaments: novel assembly models and exciting new functions for nuclear lamins. Cell Mol Life Sci 60:1607–1612

    Article  PubMed  CAS  Google Scholar 

  • Hesse M, Magin TM, Weber K (2001) Genes for intermediate filament proteins and the draft sequence of the human genome: novel keratin genes and a surprisingly high number of pseudogenes related to keratin genes 8 and 18. J Cell Sci 114:2569–2575

    PubMed  CAS  Google Scholar 

  • Hesse M, Zimek A, Weber K, Magin TM (2004) Comprehensive analysis of keratingene clusters in humans and rodents. Eur J Cell Biol 83:19–26

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann W, Franz JK (1984) Amino acid sequence of the carboxy-terminal part of an acidic type I cytokeratin of molecular weight 51000 from Xenopus laevis epidermis as predicted from the cDNA sequence. EMBO J 3:1301–1306

    PubMed  CAS  Google Scholar 

  • Hoffmann W, Franz JK, Franke WW (1985) Amino acid sequence microheterogeneities of basic (type II) cytokeratins of Xenopus laevis epidermis and evolutionary conservativity of helical and non-helical domains. J Mol Biol 184:713–724

    Article  PubMed  CAS  Google Scholar 

  • Ju B, Xu Y, He J, Liao J, Yan T, Hew CL, Lam TJ, Gong Z (1999) Faithful expression of green fluorescent protein (GFP) in transgenic zebrafish embryos under control of zebrafish gene promoters. Dev Genet 25:158–167

    Article  PubMed  CAS  Google Scholar 

  • Kirfel J, Magin TM, Reichelt J (2003) Keratins: a structural scaffold with emerging functions. Cell Mol Life Sci 60:56–71

    Article  PubMed  CAS  Google Scholar 

  • Markl J, Franke WW (1988) Localization of cytokeratins in tissues of the rainbow trout: fundamental differences in expression pattern between fish and higher vertebrates. Differentiation 39:97–122

    Article  PubMed  CAS  Google Scholar 

  • Markl J, Schechter N (1998) Fish intermediate filament proteins in structure, function and evolution. Sub-Cell Biochem 31:1–33

    Article  CAS  Google Scholar 

  • Markl J, Winter S, Franke WW (1989) The catalog and the expression complexity of cytokeratins in a teleost fish, the rainbow trout. Eur J Cell Biol 50:1–16

    CAS  Google Scholar 

  • Martorana ML, Tawk M, Lapointe T, Barre N, Imboden M, Joulie C, Geraudie J, Vriz S (2001) Zebrafish keratin 8 is expressed at high levels in the epidermis of regenerating caudal fin. Int J Dev Biol 45:449–452

    PubMed  CAS  Google Scholar 

  • Mencarelli C, Cotelli F (1997) Intermediate filament proteins immunologically related to cytokeratins in the oocyte of the fish Cyprinus carpio. Zygote 5:207–212

    PubMed  CAS  Google Scholar 

  • Miyatani S, Winkles JA, Sargent TD, Dawid IB (1986) Stage-specific keratins in Xenopus laevis embryos and tadpoles: the XK81 gene family. J Cell Biol 103:1957–1965

    Article  PubMed  CAS  Google Scholar 

  • Moll R, Franke WW, Schiller DL, Geiger B, Krepler R (1982) The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31:11–24

    Article  PubMed  CAS  Google Scholar 

  • Owaribe K, Kartenbeck J, Rungger-Brändle E, Franke WW (1988) Cytoskeletons of retinal pigment epithelial cells: interspecies differences of expression patterns indicate independence of cell function from the specific complement of cytoskeletal proteins. Cell Tissue Res 254:301–315

    Article  PubMed  CAS  Google Scholar 

  • Paramio JM, Jorcano JL (2002) Beyond structure: do intermediate filaments modulate cell signalling? BioEssays 24:836–844

    Article  PubMed  CAS  Google Scholar 

  • Parry DA, Steinert PM (1999) Intermediate filaments: molecular architecture, assembly, dynamics and polymorphism. Q Rev Biophys 32:99–187

    Article  PubMed  CAS  Google Scholar 

  • Rogers MA, Winter H, Langbein L, Bleiler R, Schweizer J (2004) The human type I keratin gene family: characterization of new hair follicle specific members and evaluation of the chromosome 17q21.2 gene domain. Differentiation 72:527–540

    Article  PubMed  CAS  Google Scholar 

  • Rogers MA, Edler L, Winter H, Langbein L, Beckmann I, Schweizer J (2005) Characterization of new members of the human type II keratin gene family and a general evaluation of the keratin gene domain on chromosome 12q13.13. J Invest Dermatol 124:536–544

    Article  PubMed  CAS  Google Scholar 

  • Schaffeld M, Markl J (2004) Fish keratins. Methods Cell Biol 78: 627–671

    Article  PubMed  CAS  Google Scholar 

  • Schaffeld M, Löbbecke A, Lieb B, Markl J (1998) Tracing keratin evolution: catalog, expression patterns and primary structure of shark (Scyliorhinus stellaris) keratins. Eur J Cell Biol 77:69–80

    PubMed  CAS  Google Scholar 

  • Schaffeld M, Herrmann H, Schultess J, Markl J (2001) Vimentin and desmin of a cartilaginous fish, the shark Scyliorhinus stellaris: sequence, expression patterns and in vitro assembly. Eur J Cell Biol 80:692–702

    Article  PubMed  CAS  Google Scholar 

  • Schaffeld M, Haberkamp M, Braziulis E, Lieb B, Markl J (2002a) Type II keratin cDNAs from the rainbow trout: implications for keratin evolution. Differentiation 70:282–291

    Article  PubMed  CAS  Google Scholar 

  • Schaffeld M., Höffling S, Haberkamp M, Conrad M, Markl J (2002b) Type I keratin cDNAs from the rainbow trout: independent radiation of keratins in fish. Differentiation 70:292–299

    Article  PubMed  CAS  Google Scholar 

  • Schaffeld M, Knappe M, Hunzinger C, Markl J (2003) cDNA sequences of the authentic keratins 8 and 18 in zebrafish. Differentiation 71:73–82

    Article  PubMed  CAS  Google Scholar 

  • Schaffeld M, Höffling S, Markl J (2004) Differential expression of “E” and “S” keratins in the shark Scyliorhinus stellaris, and cDNA sequence of a novel epidermal type I keratin. Eur J Cell Biol 83:359–368

    Article  PubMed  CAS  Google Scholar 

  • Schaffeld M, Bremer M, Hunzinger C, Markl J (2005) Evolution of tissue-specific keratins as deduced from novel cDNA sequences of the lungfish Protopterus aethiopicus. Eur J Cell Biol 84:363–377

    Article  PubMed  CAS  Google Scholar 

  • Tsonis PA, Mescher AL, Del Rio-Tsonis K (1992) Protein synthesis in the newt regenerating limb. Comparative two-dimensional PAGE, computer analysis and protein sequencing.Biochem J 281:665–668

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Kobayashi H, Suzuki K, Kotani K, Yoshizato K (2001) New epidermal keratin genes from Xenopus laevis: hormonal and regional regulation of their expression during anuran skin metamorphosis. Biochim Biophys Acta 1517:339–350

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Tanaka R, Kobayashi H, Utoh R, Suzuki K, Obara M, Yoshizato K (2002) Metamorphosis-dependent transcriptional regulation of xak-c, a novel Xenopus type I keratin gene. Dev Dyn 225:561–570

    Article  PubMed  CAS  Google Scholar 

  • Winkles JA, Sargent TD, Parry DA, Jonas E, Dawid IB (1985) Developmentally regulated cytokeratin gene in Xenopus laevis. Mol Cell Biol 5:2575–2581

    PubMed  CAS  Google Scholar 

  • Winter H, Langbein L, Krawczak M, Cooper DN, Jave-Suarez LF, Rogers MA, Praetzel S, Heidt PJ, Schweizer J (2001) Human type I hair keratin pseudogene phihHaA has functional orthologs in the chimpanzee and gorilla: evidence for recent inactivation of the human gene after the Pan-Homo divergence. Hum Genet 108:37–42

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Harald Genrich for supplementary immunofluorescence experiments, Dr. Christian Hunzinger for MALDI-TOF analysis, and Prof. Dr. Werner W. Franke's group for providing several antibodies and recombinant human keratins 8 and 18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schaffeld.

Additional information

This work was supported by grants to J.M. from the Stiftung Rheinland Pfalz für Innovation (836-386261/138) and the Deutsche Forschungsgemeinschaft (Ma 843/5-1) and a grant to D.G. from the National Science Foundation (INT-0078261).

Rights and permissions

Reprints and permissions

About this article

Cite this article

García, D.M., Bauer, H., Dietz, T. et al. Identification of keratins and analysis of their expression in carp and goldfish: comparison with the zebrafish and trout keratin catalog. Cell Tissue Res 322, 245–256 (2005). https://doi.org/10.1007/s00441-005-0031-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-0031-1

Keywords

Navigation