Skip to main content

Advertisement

Log in

Embryonic and postnatal development of masticatory and tongue muscles

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

This review summarizes findings concerning the unique developmental characteristics of mouse head muscles (mainly the masticatory and tongue muscles) and compares their characteristics with those of other muscles. The developmental origin of the masticatory muscles is the somitomeres, whereas the tongue and other muscles, such as the trunk (deep muscles of the back, body wall muscles) and limb muscles, originate from the somites. The program controlling the early stages of masticatory myogenesis, such as the specification and migration of muscle progenitor cells, is distinctly different from those in trunk and limb myogenesis. Tongue myogenesis follows a similar regulatory program to that for limb myogenesis. Myogenesis and synaptogenesis in the masticatory muscles are delayed in comparison with other muscles and are not complete even at birth, whereas the development of tongue muscles proceeds faster than those of other muscles and ends at around birth. The regulatory programs for masticatory and tongue myogenesis seem to depend on the developmental origins of the muscles, i.e., the origin being either a somite or somitomere, whereas myogenesis and synaptogenesis seem to progress to serve the functional requirements of the masticatory and tongue muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amano O, Yamane A, Shimada M, Koshimizu U, Nakamura T, Iseki S (2002) Hepatocyte growth factor is essential for migration of myogenic cells and promotes their proliferation during the early periods of tongue morphogenesis in mouse embryos. Dev Dyn 223:169–179

    Article  PubMed  CAS  Google Scholar 

  • Bladt F, Riethmacher D, Isenmann S, Aguzzi A, Birchmeier C (1995) Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376:768–771

    Article  PubMed  CAS  Google Scholar 

  • Borue X, Noden DM (2004) Normal and aberrant craniofacial myogenesis by grafted trunk somitic and segmental plate mesoderm. Development 131:3967–3980

    Article  PubMed  CAS  Google Scholar 

  • Brehm P, Henderson L (1988) Regulation of acetylcholine receptor channel function during development of skeletal muscle. Dev Biol 129:1–11

    Article  PubMed  CAS  Google Scholar 

  • Brohmann H, Jagla K, Birchmeier C (2000) The role of Lbx1 in migration of muscle precursor cells. Development 127:437–445

    PubMed  CAS  Google Scholar 

  • Buckingham M, Bajard L, Chang T, Daubas P, Hadchouel J, Meilhac S, Montarras D, Rocancourt D, Relaix F (2003) The formation of skeletal muscle: from somite to limb. J Anat 202:59–68

    Article  PubMed  Google Scholar 

  • Christ B, Ordahl CP (1995) Early stages of chick somite development. Anat Embryol 191:381–396

    Article  PubMed  CAS  Google Scholar 

  • Cossu G, Borello U (1999) Wnt signaling and the activation of myogenesis in mammals. EMBO J 18:6867–6872

    Article  PubMed  CAS  Google Scholar 

  • Couly GF, Coltey PM, Le Douarin NM (1993) The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development 117:409–429

    PubMed  CAS  Google Scholar 

  • Dietrich S (1999) Regulation of hypaxial muscle development. Cell Tissue Res 296:175–182

    Article  PubMed  CAS  Google Scholar 

  • Dietrich S, Schubert FR, Healy C, Sharpe PT, Lumsden A (1998) Specification of the hypaxial musculature. Development 125:2235–2249

    PubMed  CAS  Google Scholar 

  • Dietrich S, Abou-Rebyeh F, Brohmann H, Bladt F, Sonnenberg-Riethmacher E, Yamaai T, Lumsden A, Brand-Saberi B, Birchmeier C (1999) The role of SF/HGF and c-Met in the development of skeletal muscle. Development 126:1621–1629

    PubMed  CAS  Google Scholar 

  • Gross MK, Moran-Rivard L, Velasquez T, Nakatsu MN, Jagla K, Goulding M (2000) Lbx1 is required for muscle precursor migration along a lateral pathway into the limb. Development 127:413–424

    PubMed  CAS  Google Scholar 

  • Hall ZW, Sanes JR (1993) Synaptic structure and development: the neuromuscular junction. Cell 72 (Suppl):99–121

    Article  PubMed  Google Scholar 

  • Huang R, Zhi Q, Izpisua-Belmonte J-C, Christ B, Patel K (1999) Origin and development of the avian tongue muscles. Anat Embryol 200:137–152

    Article  PubMed  CAS  Google Scholar 

  • Linker C, Lesbros C, Stark MR, Marcelle C (2003) Intrinsic signals regulate the initial steps of myogenesis in vertebrates. Development 130:4797–4807

    Article  PubMed  CAS  Google Scholar 

  • Lu J-R, Bassel-Duby R, Hawkins A, Chang P, Valdez R, Wu H, Gan L, Shelton JM, Richardson JA, Olson EN (2002) Control of facial muscle development by MyoR and capsulin. Science 298:2378–2381

    Article  PubMed  CAS  Google Scholar 

  • Missias AC, Chu GC, Klocke BJ, Sanes JR, Merlie JP (1996) Maturation of the acetylcholine receptor in skeletal muscle: regulation of the nAChR γ-to-ɛ switch. Dev Biol 179:223–238

    Article  PubMed  CAS  Google Scholar 

  • Mootoosamy RC, Dietrich S (2002) Distinct regulatory cascades for head and trunk myogenesis. Development 129:573–583

    PubMed  CAS  Google Scholar 

  • Munsterberg AE, Kitajewski J, Bumcrot DA, McMahon AP, Lassar AB (1995) Combinatorial signaling by Sonic hedgehog and Wnt family members induces myogenic bHLH gene expression in the somite. Genes Dev 9:2911–2922

    Article  PubMed  CAS  Google Scholar 

  • Nagata J, Yamane A (2004) Progress of cell proliferation in striated muscle tissues during development of the mouse tongue. J Dent Res 83:926–929

    Article  PubMed  CAS  Google Scholar 

  • Noden DM (1983) The embryonic origins of avian cephalic and cervical muscles and associated connective tissues. Am J Anat 168:257–276

    Article  PubMed  CAS  Google Scholar 

  • Pownall ME, Gustafsson MK, Emerson CP Jr (2002) Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. Annu Rev Cell Dev Biol 18:747–783

    Article  PubMed  CAS  Google Scholar 

  • Reshef R, Maroto M, Lassar AB (1998) Regulation of dorsal somitic cell fates: BMPs and noggin control the timing and pattern of myogenic regulator expression. Genes Dev 12:290–303

    PubMed  CAS  Google Scholar 

  • Saito T, Ohnuki Y, Saeki Y, Nakagawa Y, Ishibashi K, Yanagisawa K, Yamane A (2002a) Postnatal changes in the nicotinic acetylcholine receptor subunits in rat masseter muscle. Arch Oral Biol 47:417–421

    Article  PubMed  CAS  Google Scholar 

  • Saito T, Ohnuki Y, Yamane A, Saeki Y (2002b) Effects of diet consistency on the myosin heavy chain mRNAs of rat masseter muscle during postnatal development. Arch Oral Biol 47:109–115

    Article  PubMed  CAS  Google Scholar 

  • Saito T, Fukui K, Akutsu S, Nakagawa Y, Ishibashi K, Nagata J, Shuler CF, Yamane A (2004) Effects of diet consistency on the expression of insulin-like growth factors (IGFs), IGF receptors and IGF binding proteins during the development of rat masseter muscle soon after weaning. Arch Oral Biol 49:777–782

    Article  PubMed  CAS  Google Scholar 

  • Tajbakhsh S (2003) Stem cells to tissue: molecular, cellular and anatomical heterogeneity in skeletal muscle. Curr Opin Genet Dev 13:413–422

    Article  PubMed  CAS  Google Scholar 

  • Tajbakhsh S, Cossu G (1997) Establishing myogenic identity during somitogenesis. Curr Opin Genet Dev 7:634–641

    Article  PubMed  CAS  Google Scholar 

  • Tajbakhsh S, Rocancourt D, Cossu G, Buckingham M (1997) Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 89:127–138

    Article  PubMed  CAS  Google Scholar 

  • Tajbakhsh S, Borello U, Vivarelli E, Kelly R, Papkoff J, Duprez D, Buckingham M, Cossu G (1998) Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5. Development 125:4155–4162

    PubMed  CAS  Google Scholar 

  • Turman JE Jr, Chopiuk NB, Shuler CF (2001) The Krox-20 null mutation differentially affects the development of masticatory muscles. Dev Neurosci 23:113–121

    Article  PubMed  CAS  Google Scholar 

  • Tzahor E, Kempf H, Mootoosamy RC, Poon AC, Abzhanov A, Tabin CJ, Dietrich S, Lassar AB (2003) Antagonists of Wnt and BMP signaling promote the formation of vertebrate head muscle. Genes Dev 17:3087–3099

    Article  PubMed  CAS  Google Scholar 

  • Wilson-Rawls J, Hurt CR, Parsons SM, Rawls A (1999) Differential regulation of epaxial and hypaxial muscle development by paraxis. Development 126:5217–5229

    PubMed  CAS  Google Scholar 

  • Yamane A, Mayo ML, Bringas P Jr, Chen L, Huynh M, Thai K, Shum L, Slavkin HC (1997) TGF-alpha, EGF, and their cognate receptor are co-expressed with desmin during embryonic, fetal, and neonatal myogenesis in mouse tongue development. Dev Dyn 209:353–366

    Article  PubMed  CAS  Google Scholar 

  • Yamane A, Bringas P Jr, Mayo ML, Amano O, Takahashi K, Vo H, Shum L, Slavkin HC (1998a) Transforming growth factor alpha up-regulates desmin expression during embryonic mouse tongue myogenesis. Dev Dyn 213:71–81

    Article  PubMed  CAS  Google Scholar 

  • Yamane A, Takahashi K, Mayo M, Vo H, Shum L, Zeichner-David M, Slavkin HC (1998b) Induced expression of MyoD, myogenin and desmin during myoblast differentiation in embryonic mouse tongue development. Arch Oral Biol 43:407–416

    Article  PubMed  CAS  Google Scholar 

  • Yamane A, Mayo M, Shuler C, Crowe D, Ohnuki Y, Dalrymple K, Saeki Y (2000a) Expression of myogenic regulatory factors during the development of mouse tongue striated muscle. Arch Oral Biol 45:71–78

    Article  PubMed  CAS  Google Scholar 

  • Yamane A, Ohnuki Y, Saeki Y (2000b) Delayed embryonic development of mouse masseter muscle correlates with delayed myoD family expression. J Dent Res 79:1933–1936

    PubMed  CAS  Google Scholar 

  • Yamane A, Ohnuki Y, Saeki Y (2001) Developmental changes in the nicotinic acetylcholine receptor in mouse tongue striated muscle. J Dent Res 80:1840–1844

    PubMed  CAS  Google Scholar 

  • Yamane A, Saito T, Nakagawa Y, Ohnuki Y, Saeki Y (2002a) Changes in mRNA expression of nicotinic acetylcholine receptor subunits during embryonic development of mouse masseter muscle. Zool Sci 19:207–213

    Article  PubMed  CAS  Google Scholar 

  • Yamane A, Urushiyama T, Diekwisch TGH (2002b) Roles of insulin-like growth factors and their binding proteins in the differentiation of mouse tongue myoblasts. Int J Dev Biol 46:807–816

    PubMed  CAS  Google Scholar 

  • Yamane A, Amano O, Slavkin HC (2003) Insulin-like growth factors, hepatocyte growth factor and transforming growth factor-α in mouse tongue myogenesis. Dev Growth Differ 45:1–6

    Article  PubMed  CAS  Google Scholar 

  • Yamane A, Amano O, Urushiyama T, Nagata J, Akutsu S, Fukui T, Diekwisch TGH (2004) Exogenous hepatocyte growth factor inhibits myoblast differentiation by inducing myf5 expression and suppressing myoD expression in an organ culture system of embryonic mouse tongue. Eur J Oral Sci 112:177–181

    Article  PubMed  CAS  Google Scholar 

  • Zoubine MN, Ma JY, Smirnova IV, Citron BA, Festoff BW (1996) A molecular mechanism for synapse elimination: novel inhibition of locally generated thrombin delays synapse loss in neonatal mouse muscle. Dev Biol 179:447–457

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yamane.

Additional information

This study was supported by grants-in-aid for funding scientific research (nos. 13671955 and 16591871), the Bio-ventures and High-Technology Research Center of the Ministry of Education, Culture, Sports, Science, and Technology of Japan, and the Science Research Promotion Fund from the Promotion and Mutual Aid Corporation for Private Schools of Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamane, A. Embryonic and postnatal development of masticatory and tongue muscles. Cell Tissue Res 322, 183–189 (2005). https://doi.org/10.1007/s00441-005-0019-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-0019-x

Keywords

Navigation