Skip to main content

Advertisement

Log in

Down-regulation of vasoactive intestinal peptide and altered expression of its receptors in rat diabetic cardiomyopathy

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Vasoactive intestinal peptide (VIP) is a vasorelaxant peptide that addresses two receptor subtypes, VPAC1 and VPAC2. It stimulates insulin secretion and mediates anti-inflammatory effects and has been proposed for treatment of type 2 and autoimmune diabetes. In the heart, VIP is produced and released primarily by intrinsic neurons and improves cardiac perfusion and function. Here, we investigated the involvement of this system in the events underlying development of experimentally induced diabetic cardiomyopathy. Rats received a single streptozotocin injection, and cardiac VIP content [radioimmune assay (RIA)], expression of the VIP precursors VPAC1 and VPAC2 [real-time reverse transcription-polymerase chain reaction (RT-PCR)], and VPAC1 and VPAC2 tissue distribution (immunohistochemistry) were assessed 4, 8, and 16 weeks thereafter and compared with corresponding vehicle-treated controls. Cardiac neuropathy manifests progressively during the first 4 months of diabetes at the preproVIP mRNA and VIP peptide level and is accompanied by initial down-regulation of VPAC2 at one prime target of VIP-containing axons, i.e., smooth muscle cells of coronary arterioles. VPAC1 is expressed by macrophages. After initial changes that are specific for atria and ventricles, respectively, VPAC1 and VPAC2 expression return to control levels at 16 weeks despite ongoing loss of VIP. Given the cardioprotective role of the VIP signaling system, the persistence of receptors has therapeutic implications since it is the prerequisite for trials with VPAC2 agonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adeghate E, Ponery AS, Pallot DJ, Singh J (2001) Distribution of vasoactive intestinal polypeptide, neuropeptide-Y and substance P and their effects on insulin secretion from the in vitro pancreas of normal and diabetic rats. Peptides 22:99–107

    Article  PubMed  CAS  Google Scholar 

  • Baron A, Monier D, Roatti A, Baretschi AJ (2001) Pituitary adenylate cyclase-activating polypeptide activates KATP current in rat atrial myocytes. Am J Physiol Heart Circ Physiol 280:1058–1065

    Google Scholar 

  • Belai A, Lincoln J, Burnstock G (1987) Lack of release of vasoactive intestinal polypeptide and calcitonin gene-related peptide during electrical stimulation of enteric nerves in streptozotocin-diabetic rats. Gastroenterology 93:1034–1040

    PubMed  CAS  Google Scholar 

  • Belai A, Facer P, Bishop A, Polak JM, Burnstock G (1993) Effect of streptozotocin-diabetes on the level of VIP and mRNA in myenteric neurones. Neuroreport 4:291–294

    Article  PubMed  CAS  Google Scholar 

  • Belai A, Calcutt NA, Carrington AL, Diemel LT, Tomlinson DR, Burnstock G (1996) Enteric neuropeptides in streptozotocin-diabetic rats; effects of insulin and aldose reductase inhibition. J Auton Nerv Syst 8:163–169

    Article  Google Scholar 

  • Bertrand G, Puech R, Maisonnasse Y, Bockaert J, Loubatieres-Mariani MM (1996) Comparative effects of PACAP and VIP on pancreatic endocrine secretions and vascular resistance in rat. Br J Pharmacol 117:764–770

    PubMed  CAS  Google Scholar 

  • DeHaven WI, Cuevas J (2002) Heterogeneity of pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal polypeptide receptors in rat intrinsic cardiac neurons. Neurosci Lett 238:45–49

    Article  Google Scholar 

  • Delgado M, Abad C, Martinez C, Juarranz MG, Arranz A, Gomariz RP, Leceta J (2002) Vasoactive intestinal peptide in the immune system: potential therapeutic role in inflammatory and autoimmune disease. J Mol Med 80:16–24

    Article  PubMed  CAS  Google Scholar 

  • Delgado M, Pozo D, Ganea D (2004) The significance of vasoactive intestinal peptide in immunomodulation. Pharmacol Rev 56:249–290

    Article  PubMed  CAS  Google Scholar 

  • Dijkstra CD, Döpp EA, Joling P, Kraal G (1985) The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology 54:589–599

    PubMed  CAS  Google Scholar 

  • Filipsson K, Sundler F, Hannibal J, Ahren B (1998) PACAP and PACAP receptors in insulin producing tissues: localization and effects. Regul Pept 74:167–175

    Article  PubMed  CAS  Google Scholar 

  • Harmar AJ, Arimura A, Gozes I, Journot L, Laburthe M, Pisegna JR, Rawlings SR, Robberecht P, Said SI, Sreedharan SP, Wank SA, Waschek JA (1998) International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacol Rev 50:265–269

    PubMed  CAS  Google Scholar 

  • Henning RJ, Sawmiller DR (2001) Vasoactive intestinal peptide: cardiovascular effects. Cardiovasc Res 49:27–37

    Article  PubMed  CAS  Google Scholar 

  • Inagaki N, Yoshida H, Mizuta M, Mizuno N, Fujii Y, Gonoi T, Miyazaki J, Seino S (1994) Cloning and functional characterization of a third pituitary adenylate cyclase-activating polypeptide receptor subtype expressed in insulin-secreting cells. Proc Natl Acad Sci U S A 91:2679–2683

    Article  PubMed  CAS  Google Scholar 

  • Ishihara T, Shigemoto R, Mori K, Takahashi K, Nagata S (1992) Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide. Neuron 8:811–819

    Article  PubMed  CAS  Google Scholar 

  • Klimaschewski L (1997) VIP–a “very important peptide“ in the sympathetic nervous system? Anat Embryol 196:269–277

    Article  PubMed  CAS  Google Scholar 

  • Kuncová J, Slavíková J, Reischig J (2003) Distribution of vasoactive intestinal polypeptide in the rat heart: effect of guanethidine and capsaicin. Ann Anat 185:153–161

    Article  PubMed  Google Scholar 

  • McDonald TP, Dinnis DM, Morrison CF, Harmar AJ (1998) Desensitization of the human vasoactive intestinal peptide receptor (hVIP2/PACAP R): evidence for agonist-induced receptor. Ann NY Acad Sci 865:64–72

    Article  PubMed  CAS  Google Scholar 

  • Miyata A, Sato K, Hino J, Tamakawa H, Matsuo H, Kangawa K (1998) Rat aortic smooth-muscle cell proliferation is bidirectionally regulated in a cell cycle-dependent manner via PACAP/VIP type 2 receptor. Ann NY Acad Sci 865:73–81

    Article  PubMed  CAS  Google Scholar 

  • Nowak TV, Chey WW, Chang TM, Weisbruch JP, Fouquet G (1995) Effect of streptozotocin-induced diabetes mellitus on release of vasoactive intestinal polypeptide from rodent small intestine. Dig Dis Sci 40:828–836

    Article  PubMed  CAS  Google Scholar 

  • Obata K, Itoh N, Okamoto H, Yanaihara C, Yanaihara N, Suzuki T (1981) Identification and processing of biosynthetic precursors to vasoactive intestinal polypeptide in human neuroblastoma cells. FEBS Lett 136:123–126

    Article  PubMed  CAS  Google Scholar 

  • Onuoha GN, Alpar EK, Chukwulobelu R, Nicholls DP (1999) Distributions of VIP, substance P, neurokinin A and neurotensin in rat heart: an immunocytochemical study. Neuropeptides 33:19–25

    Article  PubMed  CAS  Google Scholar 

  • Regalia J, Cai F, Helke C (2002) Streptozotocin-induced diabetes and the neurochemistry of vagal afferent neurons. Brain Res 938:7–14

    Article  PubMed  CAS  Google Scholar 

  • Richardson RJ, Grkovic I, Anderson CR (2003) Immunohistochemical analysis of intracardiac ganglia of the rat heart. Cell Tissue Res 314:337–350

    Article  PubMed  CAS  Google Scholar 

  • Said SI (1986) Vasoactive intestinal peptide. J Endocrinol Invest 9:191–200

    PubMed  CAS  Google Scholar 

  • Said SI, Mutt V (1970) Polypeptide with broad biological activity: isolation from small intestine. Science 169:1217–1218

    Article  PubMed  CAS  Google Scholar 

  • Sano H, Miyata A, Horio T, Nishikimi T, Matsuo H, Kangawa K (2002) The effect of pituitary adenylate cyclase activating polypeptide on cultured rat cardiocytes as a cardioprotective factor. Regul Pept 109:107–113

    Article  PubMed  CAS  Google Scholar 

  • Shetzline MA, Walkers JKL, Valenzano KJ, Premont RT (2002) Vasoactive intestinal polypeptide type-1 receptor regulation. J Biol Chem 277:25519–25526

    Article  PubMed  CAS  Google Scholar 

  • Slavíková J (1997) Distribution of peptide-containing neurons in the developing rat right atrium, studied using immunofluorescence and confocal laser scanning. Neurochem Res 22:1013–1021

    Article  PubMed  Google Scholar 

  • Steers WD, Mackway-Gerardi AM, Ciambotti J, de Groat WC (1994) Alterations in neural pathways to the urinary bladder of the rat in response to streptozotocin-induced diabetes. J Auton Nerv Syst 47:83–94

    Article  PubMed  CAS  Google Scholar 

  • Straub SG, Sharp GW (1996) A wortmannin-sensitive signal transduction pathway is involved in the stimulation of insulin release by vasoactive intestinal polypeptide and pituitary adenylate cyclase-activating polypeptide. J Biol Chem 271:1660–1668

    Article  PubMed  CAS  Google Scholar 

  • Tamakawa H, Miyata A, Satoh K, Miyake Y, Matsuo H, Arimura A, Kangawa K (1998) The augmentation of pituitary adenylate cyclase-activating polypeptide (PACAP) in streptozotocin-induced diabetic rats. Peptides 19:1497–1502

    Article  PubMed  CAS  Google Scholar 

  • Troger J, Neyer S, Heufler C, Huemer H, Schmid E, Griesser U, Kralinger M, Kremser B, Baldissere I, Kieselbach G (2001) Substance P and vasoactive intestinal polypeptide in the streptozotocin-induced diabetic rat retina. Investig Ophthalmol Vis Sci 42:1045–1050

    CAS  Google Scholar 

  • Tsutsumi M, Claus TH, Liang Y, Li Y, Yang L, Zhu J, Dela Cruz F, Peng X, Chen H, Yung SL, Hamren S, Livingston JN, Pan CQ (2002) A potent and highly selective VPAC2 agonist enhances glucose-induced insulin release and glucose disposal. A potential therapy for type 2 diabetes. Diabetes 51:1453–1460

    Article  PubMed  CAS  Google Scholar 

  • Wei Y, Mojsov S (1996) Tissue specific expression of different human receptor types for pituitary adenylate cyclase activating polypeptide and vasoactive intestinal polypeptide: implications for their role in human physiology. J Neuroendocrinol 8:811–817

    Article  PubMed  CAS  Google Scholar 

  • Weihe E, Reinecke M, Forssmann WG (1984) Distribution of vasoactive intestinal polypeptide-like immunoreactivity in the mammalian heart. Interrelation with neurotensin- and substance P-like immunoreactive nerves. Cell Tissue Res 236:527–540

    Article  PubMed  CAS  Google Scholar 

  • Yada T, Sakurada M, Ihida K, Nakata M, Murata F, Arimura A, Kikuchi M (1994) Pituitary adenylate cyclase activating polypeptide is an extraordinarily potent intra-pancreatic regulator of insulin secretion from islet beta-cells. J Biol Chem 269:1290–1293

    PubMed  CAS  Google Scholar 

  • Yung SL, Dela Cruz F, Hamren S, Zhu J, Tsutsumi M, Bloom JW, Caudle M, Roczniak S, Todd T, Lemoine L, MacDougall M, Shanafelt AB, Pan CQ (2003) Generation of highly selective VPAC2 receptor agonists by high throughput mutagenesis of vasoactive intestinal peptide and pituitary adenylate cyclase-activating peptide. J Biol Chem 278:10273–10281

    Article  PubMed  CAS  Google Scholar 

  • Ziegler D (1999) Cardiovascular autonomic neuropathy: clinical manifestations and measurements. Diabetes Rev 7:342–357

    Google Scholar 

  • Zochodne DW, Verge VM, Cheng C, Sun H, Johnston J (2001) Does diabetes target ganglion neurones? Progressive sensory neurone involvement in long-term experimental diabetes. Brain 124:2319–2334

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. P. Faulhammer, Ms. P. Freitag, Ms. G. Fuchs-Moll, Ms. J. Lodrová, Ms. K. Michael, Ms. T. Papadakis, Ms. K. Pícková, and Ms. S. Wiegand for skilful technical assistance. This study was supported by the Czech Science Foundation (GACR 305/01/0263, 305/03/D180), a governmental German-Czech cooperation grant (WTZ CZE 01/014), the German Research Foundation (DFG, Research Training Groups 534 and 1062), and a Young Scientist Award of the Faculty of Medicine, Justus Liebig University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Kummer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dvoráková, M.C., Pfeil, U., Kuncová, J. et al. Down-regulation of vasoactive intestinal peptide and altered expression of its receptors in rat diabetic cardiomyopathy. Cell Tissue Res 323, 383–393 (2006). https://doi.org/10.1007/s00441-005-0001-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-0001-7

Keywords

Navigation